

"Delamination/Disbond Arrest Features in Aircraft Composite Structures"

AMTAS FALL MEETING

Luke Richard and Kuen Y. Lin University of Washington November 4, 2015

Sponsored Project Information

- Principal Investigator:
 - Dr. Kuen Y. Lin, Aeronautics and Astronautics, UW
- **Research Assistant:** Luke Richard, UW (Irich1@uw.edu)
- FAA Technical Monitor: Lynn Pham
- Other FAA Personnel: Curtis Davies, Larry Ilcewicz
- Industry Participants:
 - Boeing: Eric Sager, Lyle Deobald, Matthew Dilligan, Marc Piehl, Gerald Mabson, Eric Cregger
 - Toray: Kenichi Yoshioka, Dongyeon Lee, Masahiro Hashimoto, Felix Nguyen
- Industry Sponsors: Toray and Boeing

Crack Arrest Mechanism by Fastener

Research Objectives

- Accurately predict crack arrest capability for varying laminate and fastener configurations
 - Understand driving parameters of crack propagation and arrest by multiple fasteners under static and fatigue loading
 - Develop modeling techniques which can be employed for design, certification and optimization

Two Fastener Experimental Work

- T800S/3900-2B unidirectional pre-preg tape
- BMS 9-17 surplus unidirectional pre-preg tape
- 0.25 Inch titanium fasteners
- (0/45/90/-45)_{3S} and 50% 0
- Load rate 0.1 mm/min (Static)
- 20 Hz (Fatigue)
- Crack tip tracked visually

Static Test Results

Mode I Suppression

- First fastener effectively suppresses Mode I
 - Mode I suppression regardless of clearance value
 - Propagation load increases as $G_{IIC} > G_{IC}$
 - Fastener size excessive for Mode I suppression
 - 6-32 fasteners (D=0.1380) found to suppress mode I

Friction and Crack Curvature

- 0/0 interface has minimum coefficient of static friction: 0.25
- Load transfer through friction is small compared to through fastener for static loading
 - 1000 lb preload results in 250 lb load transfer
 - Load transfer is non-negligible in fatigue loading
- Crack Curvature is extensive near fasteners but minimal outside the influenced zone

Fatigue Modeling

- Identical two and one dimensional models
 - Fatigue properties derived from initial testing and sourced from literature
 - Constant amplitude loading simulated
 - Zero and positive clearance simulated
 - Hole damage not currently modeled
- Dramatic fatigue life difference due to clearance
 - Consistent result both in tension-tension and tensioncompression loading
- Hole damage may be critical factor
 - Even 0.001 in clearance results in lower fatigue life

Fatigue Testing

- Below fatigue threshold, fastener has no effect
- Fastener hole treatment has significant effect on low cycle fatigue
 - Crack arrest capability greatly reduced by the inclusion of clearance
- Loss of fastener clamping has arisen
- Hole damage may be critical factor
 - Not always visible on tested samples

- Loads equal to or greater than static crack initiation load (9000 lbs)
- Distinct knee in zero-clearance hole
 - Fastener provides sufficient load alleviation so as to eliminate further crack propagation (below threshold)

- Run-out (10⁷ cycles) did not occur
- Clearance drilled hole did not experience this, crack propagation is only slowed

• Fatigue model and test results agree better when identical (quasi-isotropic) layup used for fatigue properties

- 1D modeling provided better agreement
 - Fastener modeling becomes increasingly important

Fatigue Results (low loading)

Loads equal to or less than crack initiation loading (9000 lbs)

Fatigue Results (low loading)

- Fastener friction clearly important
 - Modeling of friction in this scenario needs work

Future Work

- Friction Modeling
 - Lower load testing indicates critical influence of fastener friction
 - Removal of second fastener permits crack to continue to grow
- Establish conditions which create hole damage
 - Reversed and high loading both tend to increase the visibility of hole damage
- Determine critical load conditions
 - Establish scenarios where fastener is least effective
- Test with spectrum loading

Looking Forward

- Benefit to Aviation
 - Tackle a crucial weakness of laminate composite structures
 - Improve analysis to prevent changes in schedule/cost due to a re-design associated with the delamination/disbond mode of failure in large integrated structures
 - Enhance structural safety by building a methodology for designing fail-safe co-cured/bonded structures
- Future needs
 - Further fatigue testing to establish parameters
 - Initiate investigation of crack propagation through fastener arrays
 - Industry/regulatory agency inputs related to the application, design, and certification of this type of crack arrest feature

Question and comments?

Thank you.

Advanced Materials in Transport Aircraft Structures

A Center of Excellence

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE