

Durability of bonded aircraft structure

AMTAS Fall 2016 meeting October 27th 2016 Seattle, WA

Durability of Bonded Aircraft Structure

Motivation and Key Issues:

- Adhesive bonding is a key path towards reduced weight in aerospace structures.
- Certification requirements for bonded structures are not well defined.
- Objective
- Improve our understanding of adhesive response under static and fatigue loading.
 - Effect of peel stress on static and fatigue response.
 - Response in tension and shear, in bulk and thin bonds.
 - Effect of joint toughness on fatigue life.
 - Visco-elastic response in static and cyclic loading.
 - Ratchetting in bulk tension and shear
- Approach
 - Coupons with varying amounts of peel stress
 - Bulk adhesives and thin bonds, plasticity models
 - Damage models
 - Non-linear viscoelasticty

Durability of Bonded Aircraft Structure

- Principal Investigators & Researchers
 - Lloyd Smith
 - Preetam Mohapatra, David Lemme, Reza Moheimani, Sayed Hafiz
- FAA Technical Monitor
 - Curt Davies
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Boeing: Will Grace, Peter VanVoast, Kay Blohowiak

Double Cantilever Beam (DCB)

Observations :

- 1. EA9696 High toughness
- 2. FM300-2 ≈ EA9380.05
- 3. EA9394 Low toughness (adhesive failure)

Scarf Joint

Static :

- 1. EA9696 and EA9380.05 show more softening
- 2. FM300-2 strongest
- 3. Static strength does not correlate well with G_{IC}

Fatigue :

- 1. EA9696 has highest fatigue life
- 2. EA9394 has shortest fatigue life
- 3. Fatigue life tends to correlate with G_{IC}

Wide Area Lap Shear - Static

Observations:

EA9696 FM300-2

- Higher toughness than scarf
- Better correlation with GIC than scarf

FEA Modeling of bulk adhesives and bonded joints

FEA Modeling of bulk adhesives and bonded joints

Observations :

1. Not sensitive to yield criteria or hardening model.

Observations :

- Pressure sensitive > elastic plastic (4% better) with isotropic
- 2. Kinematic > Isotropic (4% better) with von Mises yielding
- 3. Less sensitive to yield criteria and hardening model

FEA Modeling of bulk adhesives and bonded joints

Stiff joint :

- Kinematic > Isotropic, by 65%, for both thin film and bulk input
- Thin film > Bulk form, by 40%, for both hardening type
- Hardening model > Input property type > yield criteria

- 1. Thin film > Bulk form, better by (5% with Kinematic) and (13% by Isotropic)
- 2. Kinematic > isotropic , by 25% for both thin film and bulk form
- 3. Hardening model > input properties > yield criteria

Joint in pure shear :

- 1. Toughened adhesive was linear in pure shear.
- 2. Independent of yield criteria or hardening model
- 3. Bulk input successful predictor.

Progressive damage modeling

Aim: Identify failure criterion for adhesive joints under cohesive damage and validate with experimental results in ABAQUS

Considerations:

- 2D, plane strain
- Cohesive zone damage model with a traction-separation description of the interface element
- Compare load-displacement response with experiment and analytical results
- Analytical results are plotted based on Timoshenko beam theory(E is the substrate modulus)

 $P^{\text{Timo}} = \frac{bh}{2a} \sqrt{\frac{G_{c}Eh}{3\left(1 + \frac{(1+\nu)}{5}\left(\frac{h}{a}\right)^{2}\right)}} \quad y^{\text{Timo}} = 4a^{2} \sqrt{\frac{G_{c}}{3Eh^{3}}} \frac{\left(1 + \frac{3(1+\nu)}{5}\left(\frac{h}{a}\right)^{2}\right)}{\sqrt{1 + \frac{(1+\nu)}{5}\left(\frac{h}{a}\right)^{2}}}$ **ABAQUS** Inputs Interface Strength σ_v Ε Interface Stiffness GIC Fracture Toughness 10

Damage modeling with cohesive elements in ABAQUS

Damage modeling with cohesive elements in ABAQUS

- CZM combines a strength based failure criterion to predict the damage initiation and a fracture mechanics-based criterion to determine the damage propagation.
- ✓ 2D meshing by using COH2D4(adhesive) and CPE4(adherends) four-node linear plane strain elements
- Damage initiation: (linear part)

Maximum nominal stress (Pure Mode)

Damage initiates when either of the peel or shear components of traction exceeds the respective critical value.

$$max\left\{\frac{t_n}{t_n^0}, \frac{t_s}{t_s^0}\right\} = 1, \quad t_n^0 = \text{tensile strength}, \quad t_s^0 = \text{shear strength}$$

Damage modeling with cohesive elements in ABAQUS

• Damage evolution: (Softening part)

Energy based evolution model:

Pure Mode(Mode I or Mode II)

Damage propagates when either the normal or shear components of energy release exceeds the respective critical value.

 $\left\{\frac{G_{I}}{G_{Ic}}, \frac{G_{II}}{G_{IIc}}\right\} = 1 , (Fracture energy is equal to the area under the traction-separation curve)$

	Tensile Modulus E (ksi)	$\begin{array}{c} \text{Tensile} \\ \text{Strength} \\ \sigma_0 \ \text{(Psi)} \end{array}$	Fracture Toughness G_{IC} (lb/in)
EA 9696	277	6660	22-55
FM300-2	400	7450	12
EA9394	615	6675	3
EA 9380.05	290*	7000*	10

* Found through iteration

Static Test on DCB (2coupons per Adhesive)

Advanced Materials

Transport Aircraft Structure

Static Test on DCB (2coupons per Adhesive)

Transport Aircraft Structure

Fatigue Test on DCB – experiments and FEM models

• Paris law $\frac{da}{dN} = C G^m$

(da/dN-G) Plot	FM300-2	EA9696
EXP	C=3x10 ⁻⁵ , m=0.762	C=7x10 ⁻⁵ , m=1.0864

Time Dependence

Aims:

- Influence of toughening agents
- Find nonlinear threshold.
- Determine how ratcheting behavior occurs under repeated loading.

Ratcheting: Increase in peak strain per cycle with repeated loading.

Approach:

- Bulk adhesives
- Creep at different durations and stress levels.
- Fit response to linear and nonlinear viscoelastic models.
- Compare load response with linear model to find nonlinear and ratcheting thresholds and determine how nonlinear model predicts strain.

Nonlinear Ratcheting

- Nonlinear viscoelastic model over predicts strain at high stress, while linear model under predicts strain.
- Why is nonlinearity higher in creep than ratcheting?

Reloading

• The difference in ratcheting is not due to variation in coupons but a difference in how the material behaves in static versus cycled loading.

Power Law Model

Both creep and ratcheting were fit to a viscoelastic power law.

- Elastic compliance, D_0 , was constant across all stress levels and for both creep and ratcheting.
- Creep and ratcheting showed a different time dependent response, shown by the coefficients D₁ and n, which was more significant in the toughened adhesive.

 $D(t) = D_0 + D_1 t^n$

Nonlinear Strain

- Nonlinear strain was observed to increase linearly with total strain.
- Ratcheting had a smaller increase in nonlinear strain with total strain than creep
 - Why?

Permanent Strain

- The toughened adhesive showed significantly more permanent strain than the standard adhesive.
- Both adhesives showed lower permanent strain from ratcheting, and a linear relationship between permanent and total strain.

Schapery Nonlinear Model

A different approach to nonlinear viscoelasticity is being investigated.

Current Approach: $\varepsilon(t) = \int_0^t F_1(t - \xi_1) \dot{\sigma}(\xi_1) d\xi_1 + \int_0^t \int_0^t F_2(t - \xi_1) \dot{\sigma}(\xi_1) \dot{\sigma}(\xi_2) d\xi_1 d\xi_2 + \int_0^t \int_0^t F_3(t - \xi_1) \dot{\sigma}(\xi_1) \dot{\sigma}(\xi_2) \dot{\sigma}(\xi_3) d\xi_1 d\xi_2 d\xi_3$

where F_1 , F_1 , and F_1 define the nonlinearity.

Schapery Approach, single integral with more nonlinear coefficients:

$$\varepsilon(t) = g_0 D_0 \sigma_0 + g_1 \int_0^t \Delta D(\varphi - \varphi') \frac{d(g_2 \sigma_0)}{d\tau} d\tau$$
$$\varphi = \int_0^t \frac{dt'}{a_\sigma} \text{ and } \varphi' = \varphi(t) = \int_0^\tau \frac{dt'}{a_\sigma}$$

where g_0 , g_1 , g_2 , and a_σ define the nonlinearity.

Viscoelastic Response in Shear

Viscoelastic Response in Shear

 Damage occurred in the WALS ratchet coupons while bulk resin coupons showed very little damage.

Observations

- G_{IC} tends to be a good indicator of fatigue performance
- Fatigue response depends more on adhesive toughness than bond thickness or temperature.
- Toughest adhesive (EA9696) did not have constant G_{IC}
 - Could not describe crack growth with linear fracture mechanics
- DCB crack growth followed Paris and were reproduced from FEA
- von Mises stress describes adhesive yield behavior
- Adherend void bridging increases plastic strain over bulk
- Adhesives tend to follow a kinematic hardening law
- Linear viscoelasticity under predicts ratchet strain while nonlinear model over predicts it.
- Nonlinear viscoelastic strain increased with total strain similar to permanent strain.
- Ratcheting in shear is more severe than bulk tension

Next Steps:

- Measure elastic and strength of EA 9380.05
- Static and Fatigue ENF simulation
- Consider a combined isotropic/kinematic hardening law
- Investigate ratcheting response in shear, numeric modelling
- Compare the nonlinear Schapery model with the triple integral model to determine if it fits the response in ratcheting better

