NOTCH SENSITIVITY OF COMPOSITE SANDWICH STRUCTURES

Dan Adams Marcus Stanfield Brad Kuramoto Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2015 Meeting Seattle, WA November 4, 2015

FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams
 Dr. Mike Czabaj
- Graduate Student Researchers:

Marcus Stanfield

Brad Kuramoto

2

- FAA Technical Monitor: Lynn Pham
- Collaborators:

Materials Sciences Corporation ASTM D30

Boeing

Oregon State University

Outline

- Brief updates: Previous research
 - Sandwich fracture mechanics
 - Sandwich damage tolerance
- Sandwich notch sensitivity investigation
 - Test method development
 - Numerical modeling progressive damage analysis

Status Update:

Mode I Sandwich Fracture Mechanics Test Method

Single Cantilever Beam (SCB) Test Method

- Draft ASTM standard completed
- International round-robin test program initiated
 - 7 test labs with previous SCB testing experience
 - Sandwich specimens fabricated, testing initiated

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Advanced Materials in

Transport Aircraft Structures

Status Update:

Development of Sandwich Damage Tolerance Test Methods

- Draft standards of CAI completed
- Draft standard for 4-Pt. Flexure After Impact under development
- Follow-on "scaling" effort underway through Air Force SBIR program

Compression After Impact A Center of Excellence (CAI)

4-Point Flexure After Impact (4-FAI)

5

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Advanced Materials in

Transport Aircraft Structures

Background: Notch Sensitivity of Sandwich Composites

- Notch sensitivity test methods for <u>monolithic composites</u> are reaching relatively high levels of maturity
 - ASTM D 5766 Open Hole Tension
 - ASTM D 6484 Open Hole Compression
 - Out-of-plane shear (Parmigiani)
- Less attention to notch sensitivity tests methods of <u>sandwich</u> <u>composites</u>
 - Currently no standardized tests for notch sensitivity
- Failure prediction of notched <u>monolithic composites</u> is receiving considerable attention

6

Reduced focus on analysis of notched <u>sandwich composites</u>

Research Objectives: Notch Sensitivity of Sandwich Composites

- Initial development of notched test methods and associated analysis methodologies for composite sandwich panels
- Documentation notched testing and analysis protocols in Composites Materials Handbook (CMH-17) with Parmigiani group (OSU)
- Explore development of new ASTM standards for notch sensitivity of sandwich composites

Sandwich Open Hole Compression

Sandwich Open Hole Flexure

Testing Considerations: Sandwich Open Hole Compression

- Test fixture/Specimen support
 - End supports
 - Clamping top and bottom
 - Potting
 - Side supports
 - Knife edge
- Specimen size
 - Separation of central hole and boundary effects
 - Production of acceptable strength reductions
- Specimen alignment
- Strain measurement

Open hole compression fixture for monolithic composites

UNIVERSI

OF UTAH

A Center of Excellence

Sandwich Open Hole Compression: Aspect Ratio Investigation

9

- Investigate the separation of central hole to the load boundary effects by examining the strain fields of different H/W ratios
- Select a H/W ratio that produces an acceptable strength reduction
- Provide more test data to calibrate material parameters in ABAQUS/NDBILIN

Current Focus: Investigating Aspect Ratio

- Carbon/epoxy facesheets, Nomex honeycomb core
- Sized to 4.0 in. wide and 2/3 in. hole diameter (W/D = 6)
- Heights of 6.0 in., 8 in., and 10.5 in.

H/W = 1.5

H/W = 2.0

H/W = 2.6

4. 1. 1

Advanced Materials in

Transport Aircraft Structures

A Center of Excellence

Current Focus: Investigating Aspect Ratio

- Max strength decreases significantly from H/W = 1.5 to 2.0
- Separation of notch effect from boundary in strain field

11

UNIVERSI

OF UTAH

Testing Considerations: Sandwich Open Hole Flexure

12

- Test fixture/specimen support
 - Inner span
 - Separation of notch and loading boundary effects
 - Outer span
 - Develop sufficient bending moment
 - Ensure failure in inner span
- Specimen size

Sandwich Open Hole Compression: Aspect Ratio Investigation

- Investigate the separation of central hole to the load boundary effects by examining the strain fields of different inner span to width (L/W) ratios
- Select a L/W ratio that produces an acceptable strength reduction
- Provide more test data to calibrate material parameters in ABAQUS/NDBILIN

Current Focus: Investigating Aspect Ratio

- Sandwich configuration:
 - Carbon/epoxy facesheets, ½ in. Nomex honeycomb core
 - 0.5 in. diameter central circular hole
 - 3 in. width x 32 in. length
- Investigating effect of inner span
 - Inner spans of 3 in., 6 in., and 9 in.
 - Constant applied moment
 - Outer span Inner span = 20 in.

L/W = 3

14

Current Focus: Investigating Aspect Ratio

15

- No significant difference in max strength
- Far field reached at L/W = 2.0

Analysis of Notched Sandwich Specimens ABAQUS with NDBILIN:

- User-defined nonlinear material model (UMAT) for ABAQUS
- Developed by Materials Sciences Corp.
- Stiffness degradation based progressive damage model
 - Lamina level stiffness degradation
 - Max. stress, max. strain or Hashin failure criteria for damage onset
 - Bilinear stiffness response used to model material damaged state
 - "Built in" laminated plate theory for elements

UNIVER

OF UTAH

Failure Analysis of Notched Sandwich Specimens Development of Modeling Approach

- Modeling of damage progression in facesheets
 - Analysis of interlaminar disbond (Mode I and Mode II)
 - Analysis of laminate open-hole <u>tension</u> test
 - Analysis of laminate open-hole <u>compression</u> test
- Modeling of damage progression in sandwich composites
 - Sandwich interface disbond
 - Sandwich open hole compression test
 - Sandwich flexure test

Damage Progression in Facesheets: Analysis of Interlaminar Disbond

• IM7/8552 testing using ASTM D5528

18


```
THE
UNIVERSITY
OF UTAH
```

Damage Progression in Facesheets: Analysis of Interlaminar Disbond

• IM7/8552 testing using ASTM D7905

Damage Progression in Facesheets: Analysis of Open Hole Tension Tests

- Simulation of open hole tension testing of IM7/8552 carbon/epoxy laminates (ASTM D5766)
 [0/90/0]_T
- Comparison with results from mechanical testing
 - Ultimate strength
 - Stress vs. strain plots
 - Strain fields from
 Digital image correlation
 - Damage progression using
 X-ray CT

Damage Progression in Facesheets: Analysis of Open Hole Tension Tests

- Good agreement on stiffness response
- Similar full field strain response

Damage Progression in Facesheets: Analysis of Open Hole Tension Tests

Damage Progression in Facesheets: Open Hole Compression Testing & Analysis

- Mechanical testing of 1.5 in. wide specimen, 0.25 in. dia center hole (ASTM D6484)
- Two IM7/8552 carbon/epoxy laminates: [0₅/90₅/0₅]_T [0/90/0]_{5T}
- Comparison with results from mechanical testing
 - Ultimate strength
 - Damage state using
 X-ray CT

Damage Progression in Facesheets: Open Hole Compression Analysis $[0_5/90_5/0_5]_T$

X-ray CT

Matrix damage Delamination

90% max load

NDBILIN

Matrix damage

Delamination

24

Damage Progression in Facesheets: Open Hole Compression Analysis [0/90/0]_{5T}

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Damage Progression in Facesheets: Comparison with Experimental Results

- Similar damage progression and strength in tension test
 - Little difference between model with and without cohesive elements
- Model over predicting strength on OHC specimens
- Compression failure modes not predicted in model
 - Investigating ABAQUS buckling solution

Initial Failure Analysis: Sandwich Open Hole Compression Test

- Good agreement with measured stiffness
- Over prediction of notched compression strength
- Investigating cohesive elements between facesheet and core

ABAQUS/NDBILIN Prediction

DIC Results

Future Work:

Notch Sensitivity of Composite Sandwich Structures

- Investigate buckling solution for compression tests
- Inclusion of ABAQUS cohesive elements at facesheet/core interface
- Investigate additional notch configurations

SUMMARY: Benefits to Aviation

- Standardized damage tolerance test methods for sandwich composites
- Development of notch sensitivity testing and analysis methods for sandwich composites
- Scaling of test results for application on composite sandwich structures

Thank you for your attention!

Questions?

Future Work:

Notch Sensitivity of Composite Sandwich Structures

Investigate additional notch configurations
 One sided (single facesheet) hole
 Tension

 Edge v-notch flexure
 Out of plane shear (Mode III)
 In-plane biaxial tension/compression

Sandwich Open Hole Compression: Investigating Aspect Ratio

- Notch strength decreases relatively more than unnotched
- Out of plane deformation

UNIVERSI

OF UTAH

Analysis of Notched Sandwich Specimens: Sensitivity Study

- Material properties
 - Tension/compression
- Mesh density
- Mesh orientation
 - Notch centric
 - Fiber aligned mesh
- Solution type
- Solution parameters
 - Step size
 - Viscous damping

