NOTCH SENSITIVITY OF COMPOSITE SANDWICH STRUCTURES

Dan Adams
Marcus Stanfield
Brad Kuramoto
Department of Mechanical Engineering
University of Utah
Salt Lake City, UT

AMTAS Autumn 2015 Meeting
Seattle, WA
November 4, 2015
FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams
 Dr. Mike Czabaj
- Graduate Student Researchers:
 Marcus Stanfield
 Brad Kuramoto
- FAA Technical Monitor: Lynn Pham
- Collaborators:
 Materials Sciences Corporation
 ASTM D30
 Boeing
 Oregon State University
Outline

• Brief updates: Previous research
 – Sandwich fracture mechanics
 – Sandwich damage tolerance

• Sandwich notch sensitivity investigation
 – Test method development
 – Numerical modeling – progressive damage analysis
Status Update:
Mode I Sandwich Fracture Mechanics Test Method

Single Cantilever Beam (SCB) Test Method

• Draft ASTM standard completed
• International round-robin test program initiated
 • 7 test labs with previous SCB testing experience
 • Sandwich specimens fabricated, testing initiated
Status Update:

Development of Sandwich Damage Tolerance Test Methods

- Draft standards of CAI completed
- Draft standard for 4-Pt. Flexure After Impact under development
- Follow-on “scaling” effort underway through Air Force SBIR program

![Compression After Impact (CAI)](image1)

![4-Point Flexure After Impact (4-FAI)](image2)
Background:
Notch Sensitivity of Sandwich Composites

- Notch sensitivity test methods for monolithic composites are reaching relatively high levels of maturity
 - ASTM D 5766 – Open Hole Tension
 - ASTM D 6484 – Open Hole Compression
 - Out-of-plane shear (Parmigiani)

- Less attention to notch sensitivity tests methods of sandwich composites
 - Currently no standardized tests for notch sensitivity

- Failure prediction of notched monolithic composites is receiving considerable attention
 - Reduced focus on analysis of notched sandwich composites
Research Objectives: Notch Sensitivity of Sandwich Composites

- Initial development of notched test methods and associated analysis methodologies for composite sandwich panels
- Documentation notched testing and analysis protocols in Composites Materials Handbook (CMH-17) with Parmigiani group (OSU)
- Explore development of new ASTM standards for notch sensitivity of sandwich composites
Testing Considerations:
Sandwich Open Hole Compression

• Test fixture/Specimen support
 – End supports
 • Clamping top and bottom
 • Potting
 – Side supports
 • Knife edge
• Specimen size
 – Separation of central hole and boundary effects
 – Production of acceptable strength reductions
• Specimen alignment
• Strain measurement

Open hole compression fixture for monolithic composites
Sandwich Open Hole Compression: Aspect Ratio Investigation

- Investigate the separation of central hole to the load boundary effects by examining the strain fields of different H/W ratios.
- Select a H/W ratio that produces an acceptable strength reduction.
- Provide more test data to calibrate material parameters in ABAQUS/NDBILIN.
Current Focus: Investigating Aspect Ratio

- Carbon/epoxy facesheets, Nomex honeycomb core
- Sized to 4.0 in. wide and 2/3 in. hole diameter (W/D = 6)
- Heights of 6.0 in., 8 in., and 10.5 in.

H/W = 1.5 H/W = 2.0 H/W = 2.6
Current Focus: Investigating Aspect Ratio

- Max strength decreases significantly from $H/W = 1.5$ to 2.0
- Separation of notch effect from boundary in strain field
Testing Considerations: Sandwich Open Hole Flexure

- Test fixture/specimen support
 - Inner span
 - Separation of notch and loading boundary effects
 - Outer span
 - Develop sufficient bending moment
 - Ensure failure in inner span
- Specimen size
Sandwich Open Hole Compression: Aspect Ratio Investigation

- Investigate the separation of central hole to the load boundary effects by examining the strain fields of different inner span to width (L/W) ratios
- Select a L/W ratio that produces an acceptable strength reduction
- Provide more test data to calibrate material parameters in ABAQUS/NDBILIN
Current Focus: Investigating Aspect Ratio

- **Sandwich configuration:**
 - Carbon/epoxy facesheets, ½ in. Nomex honeycomb core
 - 0.5 in. diameter central circular hole
 - 3 in. width x 32 in. length

- **Investigating effect of inner span**
 - Inner spans of 3 in., 6 in., and 9 in.
 - Constant applied moment
 - Outer span – Inner span = 20 in.

\[\frac{L}{W} = 3 \]
Current Focus:
Investigating Aspect Ratio

- No significant difference in max strength
- Far field reached at L/W = 2.0

Sandwich Open Hole Flexure Aspect Ratio Comparison

Normalized Strength

<table>
<thead>
<tr>
<th>Aspect Ratio (L/W)</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Notched Sandwich Specimens

ABAQUS with NDBILIN:

- User-defined nonlinear material model (UMAT) for ABAQUS
- Developed by Materials Sciences Corp.
- Stiffness degradation based progressive damage model
 - Lamina level stiffness degradation
 - Max. stress, max. strain or Hashin failure criteria for damage onset
 - Bilinear stiffness response used to model material damaged state
 - “Built in” laminated plate theory for elements
Failure Analysis of Notched Sandwich Specimens
Development of Modeling Approach

• Modeling of damage progression in facesheets
 – Analysis of interlaminar disbond (Mode I and Mode II)
 – Analysis of laminate open-hole tension test
 – Analysis of laminate open-hole compression test

• Modeling of damage progression in sandwich composites
 – Sandwich interface disbond
 – Sandwich open hole compression test
 – Sandwich flexure test
Damage Progression in Facesheets: Analysis of Interlaminar Disbond

- IM7/8552 testing using ASTM D5528

![DCB Load vs Displacement Graph]

- Experimental Fatigue Precrack
- Experimental Non-precrack
- Analytical Model

Displacement (in) vs Load (lbf)
Damage Progression in Facesheets: Analysis of Interlaminar Disbond

- IM7/8552 testing using ASTM D7905
Damage Progression in Facesheets: Analysis of Open Hole Tension Tests

- Simulation of open hole tension testing of IM7/8552 carbon/epoxy laminates (ASTM D5766) $[0/90/0]_T$
- Comparison with results from mechanical testing
 - Ultimate strength
 - Stress vs. strain plots
 - Strain fields from Digital image correlation
 - Damage progression using X-ray CT
Damage Progression in Facesheets: Analysis of Open Hole Tension Tests

- Good agreement on stiffness response
- Similar full field strain response

![Graph showing Open Hole Tension](image)

Open Hole Tension

- Stress (psi)
 - Experimental
 - Finite Element Model

![Finite Element Prediction](image)

![Experimental Result](image)
Damage Progression in Facesheets: Analysis of Open Hole Tension Tests

90% max load

Matrix damage

Delamination

NDBILIN

X-ray CT
Damage Progression in Facesheets: Open Hole Compression Testing & Analysis

- Mechanical testing of 1.5 in. wide specimen, 0.25 in. dia center hole (ASTM D6484)
- Two IM7/8552 carbon/epoxy laminates:

 \([0_{5}/90_{5}/0_{5}]_{T} \quad [0/90/0]_{5T}\)

- Comparison with results from mechanical testing
 - Ultimate strength
 - Damage state using X-ray CT

![Open Hole Compression Test](image)
Damage Progression in Facesheets: Open Hole Compression Analysis $[0_5/90_5/0_5]_T$

- X-ray CT
 - Matrix damage
 - Delamination
- NDBILIN
 - Matrix damage
 - Delamination

90% max load
Damage Progression in Facesheets: Open Hole Compression Analysis $[0/90/0]_{5T}$

90% max load

Matrix damage

NDBILIN

X-ray CT

View A-A
Damage Progression in Facesheets: Comparison with Experimental Results

• Similar damage progression and strength in tension test
 – Little difference between model with and without cohesive elements

• Model over predicting strength on OHC specimens

• Compression failure modes not predicted in model
 – Investigating ABAQUS buckling solution
Initial Failure Analysis:
Sandwich Open Hole Compression Test

- Good agreement with measured stiffness
- Over prediction of notched compression strength
- Investigating cohesive elements between facesheet and core

![Graph showing Open Hole Edgewise Compression](image)

- Open Hole Edgewise Compression Chart
- Experimental and FEM predictions

![AB AQUS/NDBILIN Prediction](image)

- ABAQUS/NDBILIN Prediction

![DIC Results](image)

- DIC Results
Future Work:
Notch Sensitivity of Composite Sandwich Structures

- Investigate buckling solution for compression tests
- Inclusion of ABAQUS cohesive elements at facesheet/core interface
- Investigate additional notch configurations
SUMMARY: Benefits to Aviation

- Standardized damage tolerance test methods for sandwich composites
- Development of notch sensitivity testing and analysis methods for sandwich composites
- Scaling of test results for application on composite sandwich structures
Thank you for your attention!

Questions?
Investigate additional notch configurations
One sided (single facesheet) hole
Tension
Edge v-notch flexure
Out of plane shear (Mode III)
In-plane biaxial tension/compression
Sandwich Open Hole Compression: Investigating Aspect Ratio

- Notch strength decreases relatively more than unnotched
- Out of plane deformation

Sandwich Open Hole Compression Aspect Ratio Comparison

<table>
<thead>
<tr>
<th>Aspect Ratio</th>
<th>Normalized Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/W = 1.5</td>
<td>Unnotched: 1.20, Notched: 0.40</td>
</tr>
<tr>
<td>H/W = 2.0</td>
<td>Unnotched: 1.00, Notched: 0.40</td>
</tr>
<tr>
<td>H/W = 2.6</td>
<td>Unnotched: 0.80, Notched: 0.40</td>
</tr>
</tbody>
</table>

H/W = 1.5
H/W = 2.0
H/W = 2.6
Analysis of Notched Sandwich Specimens: Sensitivity Study

- Material properties
 - Tension/compression
- Mesh density
- Mesh orientation
 - Notch centric
 - Fiber aligned mesh
- Solution type
- Solution parameters
 - Step size
 - Viscous damping

Damage parameters

Notch-centric mesh

Fiber-aligned mesh