

Failure of Notched Laminates Under Out-of-Plane Bending, Phase VI

Spring 2014

Imran Hyder, Nasko Atanasov, & John P. Parmigiani

Oregon State University

Motivation, Objective, and Approach

Motivation and Key Issues

Develop analysis techniques useful in design of composite aircraft structures under out-of-plane loading (bending and shear)

• Objective

Determine failure modes and evaluate capabilities of current models to predict failure

- Approach
 - Experiments: Mode 3 fracture
 - Modeling: Progressive damage development and delamination (Abaqus) under Mode 3 fracture

Out-of-Plane Shear Mode III Bending

- Principal Investigators & Researchers
 - John Parmigiani (PI); OSU faculty
 - I. Hyder, N. Atanasov; OSU grad students
- FAA Technical Monitor
 - Curt Davies
 - Lynn Pham
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Gerry Mabson, Boeing (technical advisor)
 - Tom Walker, NSE Composites (technical advisor)

- Phase I (2007-08)
 - Out-of-plane bending experiments w/composite plates
 - Abaqus modeling with progressive damage
- Phase II (2008-09)
 - Abaqus modeling with buckling delamination added
 - Sensitivity study of (generic) material property values
- Phase III (2009-10)
 - Abaqus modeling w/ more delamination interfaces

- Phase IV (2010-11)
 - Further study of additional delamination interfaces for out-ofplane bending and initiating vs. propagating toughness
 - Feasibility of Abaqus/Explicit and XFEM for future work
 - Sensitivity study using Boeing mat'l property values
- Phase V (2011-12)
 - Complete Out-of-plane shear (mode III) experiments & begin preliminary Abaqus modeling
 - Evaluate the Abaqus plug-in Helius:MCT (Firehole Composites) for modeling progressive damage in composites and applicability to Out-of-plane bending

- Phase VI (2012-13)
 - Evaluation of out-of-plane shear (mode III) modeling with built in capabilities of Abaqus Standard

- Evaluation of plug-in Helius: MCT (Firehole Composites) for mode III shear
- Evaluation for Abaqus Explicit for mode III shear

- Phase VII (2013-14)
 - Report of methods and results for Phase VI
 - Exploring the effectiveness of solid vs. continuum shell elements in modeling Mode III
 - Improving Abaqus/Explicit Modeling of Mode III shear
 - Sensitivity study using Boeing material property values with Helius: MCT, original values inaccurate?
 - Sensitivity study using Boeing material property values with Abaqus/Standard, original values inaccurate?
 - Sensitivity study using published material property values and configurations with Abaqus/Standard to determine which properties are significant for Mode III shear

Today's Topic

- Experimental results: Out-of-plane shear
- Evaluation of Abaqus Standard results
- Evaluation of Helius: MCT results
- Evaluation of Abaqus Explicit results
- Current work with Mode III

Today's Topic

- Experimental results: Out-of-plane shear
- Evaluation of Abaqus Standard results
- Evaluation of Helius: MCT results
- Evaluation of Abaqus Explicit results
- Current work with Mode III

Experimental Results Out-of-Plane Shear

- Edge-notched CF panels displaced to maximum load
- 20 and 40 lamina thick panels with three lay ups: 10%, 30%, & 50% 0° plies
- Metrics: Applied displacement and applied load

- Experimental results: Out-of-plane shear
- Evaluation of Abaqus Standard results
- Evaluation of Helius MCT results
- Evaluation of Abaqus Explicit results
- Current work with Mode III

Evaluation of Abaqus Standard: Computational Model

- Solver basics:
 - Uses Newton-Raphson Technique to iterate to a converge solution for each time increment
- Static equilibrium: [K][U] = [R]
- Uses Hashin failure criteria
- Quasi-static analysis and non-linear geometry turned on
- Panel: Continuum shell, reduced integration elements (SC8R)
- Grips: Continuum, 3-D, 8 node, reduced integration element (C3D8R)
- Boundary conditions implemented by grips
- Mesh Selection 20 elements around notch tip, based on a linear elastic convergence study
- Implemented viscous regularization
- Hourglass stiffness scaling based on a converged value

Grip is fixed, but allowed to rotate about x-axis

Evaluation of Abaqus Standard: Single Element Layer and 3 Element Layer Delamination with VCCT Results

- All models effectively captured linear region
- FE models have stiffness factors scaled high
- FE material response is similar, but 3-layer VCCT models capture experiment behavior better
- Not all models revealed a clear max

Evaluation of Abaqus Standard: Summary of Results

20 PLY

40 PLY

- Benefit: Standard predicts max load within 20% of experiments
- Major Challenges:
 - Implicit analysis fails to converge without excessive stiffness factors
 - After the use of excessive stiffness factors, some models still fail to converge
- Suggestion:
 - Accuracy can be improved by changing VCCT interfaces – but no rational for it
 - Modify convergence parameters

	FEA % Difference from Average Experimental Maximum Load							
% 7ero	1 Element Layer - No Scaled Stiffness Factors (SSF)	1 Element Layer - with SSF	2 Element Layer VCCT with SSF - Interface from Experiments	2 Element Layer VCCT with SSF - Interface before 90° plies	3 Element Layer VCCT with SSF - Interface from Experiments	3 Element Layer VCCT with SSF - Interface before 90° plies		
10%	31%	15%	25%	20%	20%	-1%		
30%	DNC	19%	21%	21%	DNC	18%		
50%	-16%	-16%	-23%	-23%	DNC	DNC		
10%	45% 22%		DNC	18%	DNC	17%		
30%	DNC 3%		-2%	-7%	42%	22%		
50%	-3%	-5%	-4%	-4%	DNC	DNC		

Today's Topics

- Experimental results: Out-of-plane shear
- Evaluation of Abaqus Standard results
- Evaluation of Helius MCT results
- Evaluation of Abaqus Explicit results
- Current work with Mode III

Evaluation of Abaqus/Standard with Helius:MCT

- Helius:MCT was utilized for its recognized convergence capabilities
 and fast solver algorithm for out-of-plane bending
- Solver basics: analyzes the composite based on its constituents as well as a whole:

Average stress of composite, fiber, and matrix respectively

- Method:
 - Adapt input file to include Helius:MCT solver
 - Use default parameters, instant degradation parameters, energy degradation parameters
 - Apply cohesive zones (CZ)

Evaluation of Abaqus/Standard with Helius:MCT Results

- Representative of all trials and configurations, including with CZ
- Benefits:fast solver: runtime < 10hrs
- Major challenges:
 - Convergence
 - Accuracy in certain situations
- Suggestions
 - Shows promise if convergence occurs, try different energy parameters or degradation values
 - Possible changes may occur in the future to better the solver: Autodesk ownership

Today's Topics

- Experimental results: Out-of-plane shear
- Evaluation of Abaqus Standard results
- Evaluation of Helius MCT results
- Evaluation of Abaqus Explicit results
- Current work with Mode III

Abaqus/Explicit Analysis : Solver Basics and Implementation of Filtering

- Why use explicit: implementation of element deletion and better convergence
 Solver basics:
 - Analysis uses an explicit, dynamic solver: $[M][\ddot{U}] + [C][\dot{U}] + [K][U] = [R]$
 - Central difference method for enhanced convergence: hope to overcome the issues present in Abaqus/Standard
 - Hashin damage criteria

- Benefits: convergence in most cases
- Major challenges:
 - Extreme amounts of noise
 - Extremely long runtime
 - Difficult to determine cut-off frequency
 - Large amounts of data, 10+ Gb ODB
 - Suggestions
 - Filtering the data
 - Implementing more layers

Abaqus/Explicit Analysis: Implementation of Multiple Layers and VCCT

- Benefits: eliminate distorted elements
- Major Challenges:
 - Convergence
 - Extremely long run times
- Suggestion: not much can be gained overall from implementing multiple layers

Summary of Phase VI

- With Standard, it is possible to get max load predictions <20 % of experiments, however with major issues
 - Requires scaling convergence factors which produces excessively stiff elements
 - Some solutions still may not converge
- Helius: MCT has severe convergence issues
- Explicit can converge and can handle element deformation but other issues exist
 - Noisy solutions with damage
 - Extremely long run time
- Recommendations Going beyond the built-in capabilities of Abaqus and Helius:MCT
 - Create a user defined element that can more effectively handle deformation
 - Create a user defined progressive damage criterion based on Tsai Wu, Tsai-Wu has shown to be more effective then Hashin Damage

Today's Topics

- Experimental results: Out-of-plane shear
- Evaluation of Abaqus Standard results
- Evaluation of Helius MCT results
- Evaluation of Abaqus Explicit results
- Current work with Mode III

Current Work with Mode III

- Report of methods and results for Phase VI
- Exploring the effectiveness of solid vs. shell elements in modeling Mode III
- Improving Abaqus/Explicit Modeling of Mode III shear
- Sensitivity study using Boeing material property values with Helius: MCT
- Sensitivity study using Boeing material property values with Abaqus/Standard
- Sensitivity study using published material property values and configurations with Abaqus/Standard to determine which property values are most significant

Current Work with Mode III

- Report of methods and results for Phase VI
- Exploring the effectiveness of solid vs. shell elements in modeling Mode III
- Improving Abaqus/Explicit Modeling of Mode III shear
- Sensitivity study using Boeing material property values with Helius: MCT
- Sensitivity study using Boeing material property values with Abaqus/Standard
- Sensitivity study using published material property values and configurations with Abaqus/Standard to determine which property values are most significant

Solid vs. Shell Elements

- Important change: Helius:MCT (Firehole Composites) → Simulation Composite Analysis (SCA) [Autodesk]
- Only shell elements can be used with Hashin criteria in Abaqus/ Standard and Explicit
- Shell vs. solid elements were only compared within SCA
- Drastic difference in behavior and increased scatter with solid elements

Possible Improvements for Abaqus/Explicit

- Attempted to increase in-plane mesh density: 64 elements around notch tip
 - Noise still occurred
 - Noise less evident only because fewer frames were extracted from .odb files
 - If more frames were extracted, more noise would be evident
- Introduce damping into the system?
- Determine a better mesh and work with existing filtering techniques?

SCA Sensitivity Study

*Hashin and Energy Parameters may not be accurate

Percent differences from experimental for different configurations with varied instant degradation parameters

Combination	%		
Complination	Difference		
20 plies thick - 10% Zeros	5.7		
20 plies thick - 30% Zeros	9.8		
20 plies thick - 50% Zeros	30.9		
40 plies thick - 10% Zeros	4.3		
40 plies thick - 30% Zeros	11.0		
40 plies thick - 50% Zeros	18.9		
Average	13.4		

Parameters used in the 2^k factorial

Mesh Density	8, 20		
Elements through	15		
thickness	1,5		
Energy	Based on		
Degradation	Study (2x)		
Element Type	C3D8R & SC8R		

- Variation of material parameters obtained maximum loads for each configurations with variations of instant degradation factors
- 2^k factorial using instant degradation factors w/ 20 plies thick 30% Zeros configuration no maximum load obtained with solid elements. Obtained maximum load within 2 percent using 5 elements through the thickness and 8 elements around the notch tip; also, damage propagation is similar to damage in experimental panels.

SCA Sensitivity Study

 2^k factorial using energy degradation factors – same results as solid vs. shell element investigation for the solid element models within the study. On-going study to determine the effect of number of elements through the thickness and energy parameters. However, it appears that using energy degradation also has limits: convergence issues still exist.

Parameters used in the 2k
factorialMesh Density8, 20Elements through
thickness1,5Energy DegradationGiven & 1/4 of
givenFactorsgivenElement TypeC3D8R & SC8R

 Conclusion: more elements = lower probability of convergence, convergence is highly dependent on degradation factors which may be different for each configuration, ultimate problem is excessive element deformation

Sensitivity Studies with Abaqus/Standard

- Sensitivity study using Boeing material property values with Abaqus/ Standard
 - 2¹⁰⁻⁴ fractional factorial for a 1/16 fraction, resolution IV design
 - Vary Hashin and energy parameters ± 20%
 - Ideal future outcome: determine which material properties have the greatest effect with the Boeing configurations and what combination of varied properties yields the lowest deviation when compared to experimental outcomes
- Sensitivity study using published material property values and configurations with Abaqus/Standard
 - Will use simpler configurations, as compared to Boeing layups, and fewer plies through the thickness: 8-10 plies thick with all 0°s, 90°s, ±45° lamina orientations, this may provide for clearer results
 - A variety of loading scenarios will be investigated: Mode III, compression, etc.
 - Ideal future outcome: define loadings and layups that isolate the Hashin and energy parameters leading to an ASTM standard for determination of these properties.

Questions?

Out-of-Plane Shear: Summary of Experimental Results

Maximum applied load (failure load)

	Max Force per Test [kN]							
Layup								
(#plies / %	1	2	3	4	5	6	MEAN	
zero degree)								
40/50%	5.552	5.345	5.122	6.103	5.395	5.321	5.473	
40/30%	5.342	5.363	6.061	5.616	6.176	5.690	5.708	
40/10%	3.891	4.161	4.112	4.016	4.277	4.148	4.101	
20/50%	1.751	1.859	1.929	1.691	1.740	1.801	1.795	
20/30%	1.484	1.541	1.541	1.456	1.527	1.638	1.531	
20/10%	1.290	1.215	1.258	1.254	1.198	1.336	1.259	

Why Continuum Shell Elements vs. Solid Elements

- Solid elements can be laminated but max order of variation of the displacement is quadratic
 - Hence strain variation is at most linear
 - Insufficient to model variation of strain through thickness of laminate
- Potential Solution: stack solid elements at one element per lamina
 - In-plane dimensions can not be > 10x thickness
 - Requires a really fine mesh
- Alternate Solution: Use continuum shell elements
 - Does not have the same problems as a solid element
 - Can have multiple plies through the thickness
 - Also can be stacked for using with grips and delamination
 - Laminate stacking sequence was constructed using Composite Layup in Abaqus

 define material property per ply
- MOST IMPORTANTLY: Abaqus built-in limits Hashin Damage to elements with plane stress formulation, which include plane stress, shell, continuum shell, and membrane elements

Viscous Regularization Scheme

- The viscous regularization scheme helps a model come to a converged solution
- Viscous coefficient must be small with respect to the time increment, $t/\eta \downarrow i \rightarrow \infty$
- Four viscous coefficients for each damage mode that needs to be user specified

η_{fc}	Viscosity Coefficient for Fiber Compression
η_{ft}	Viscosity Coefficient for Fiber Tension
η_{mc}	Viscosity Coefficient for Matrix Compression
η_{mt}	Viscosity Coefficient for Matrix Tension

Viscous Regularization Scheme

- Models involving stiffness degradation may have convergence difficulties with implicit solvers
- For small time increments, viscous regularization allows the tangents stiffness matrix of a mat'l to be positive definite
 - Tangent stiffness matrix would be symmetric with positive eigenvalues
 - If matrix is singular and not positive definite, determinant of matrix would be zero
 - Results in dividing by zero during matrix inversion
- Technique defines a regularized damage variable, $d\downarrow I\uparrow V$ and the rate at which the variable changes with time $d\downarrow I\uparrow V$
 - User specifies the relaxation time of the viscous system $\eta \downarrow I$
 - $d\downarrow I\uparrow V$ is utilized to \dot{V}_{calc} and \dot
- Viscous regularization scheme helps the model converges

Viscous Regularization Scheme Cont....

- How to determine $\eta \downarrow ft$, $\eta \downarrow fc$, $\eta \downarrow mt$, $\eta \downarrow mc$?
- Set terms terms to relatively high values to get model convergence
- For this study, $\eta \downarrow ft = \eta \downarrow fc = \eta \downarrow mt = \eta \downarrow mc$
- Parameters were decreased until maximum load prediction did not change dramatically
- This yielded a starting point in determining appropriate values for viscous coefficients

Scaling Hourglass Stiffness

- Default hourglass stiffness was scaled to prevent severe element deformation
- Pure stiffness approach was recommended for quasistatic analysis
- Three user defined scaling factors

Factor	Description	Typical Range
	Hour glass stiffness scaling factor for displacement degree of freedom	0.2 - 3.0
	Hour glass stiffness scaling factor for rotational degree of freedom	0.2 - 3.0
	Hour glass stiffness scaling factor for out-of-plane displacement degree of freedom	0.2 - 3.0

Scaling Hourglass Stiffness

- Scaling $s \uparrow w$ caused solutions to fail prematurely
- Only scaled $s\hat{l}s$ and $s\hat{l}r$
- After scaling to the limits of the recommended value, not all stacking sequences converged
- After drastically increasing factors, convergence was achieved for most models
- Factors were selected based on a convergence study

Scaling Hourglass Stiffness

Abaqus/Standard Damage Path Model

1 Layer – No SSF

10% 0°- 20 ply

Results Table: Explicit and Helius:MCT

Energy (Given)				Instant Degradation (Given)					
Combo	MCT (N)	Exp. (N)	% Diff	Converge	Combo	MCT (N)	Exp. (N)	% Diff	Converge
F	2330.83	1188	65.0	Y	F	1296.9	1188	8.8	Ν
N	2377.34	1689	33.9	Y	N	1184.99	1689	35.1	Ν
Р	2598.69	1472	55.4	Y	Р	1388.43	1472	5.8	Y
AN	<mark>9785.4</mark>	5111	62.8	Ν	AN	4989.86	5111	2.4	Ν
FP	9278.33	4005	79.4	Y	FP	5104.25	4005	24.1	Ν
AR	7394.08	5899	22.5	Y	AR	6528.27	5899	10.1	Ν
						Cohesive Z	ones (Given - Instant)		
					Combo	MCT (N)	Exp. (N)	% Diff	Converge
Instant Degradation (Default)			F	713	1188	50.0	Ν		
Combo	MCT (N)	Exp. (N)	% Diff	Converge	Ν	996	1689	51.6	Ν
F	1254	1188	5.4	Ν	Р	838	1472	54.8	Ν
N	1514	1689	10.9	Ν		Abaqus/Explicit: Filter			
Р	1624	1472	9.9	Ν	Combo	Explicit (N)	Exp. (N)	% Diff	Converge
AN	5182	5111	1.4	Ν	F	1291	1188	8.3	Y
FP	4817	4005	18.4	Ν	N	928	1689	58.1	Y
AR	6528	5899	10.1	N	Р	1158	1472	23.8	Y
Legend: Y = Yes, N=No, Exp. = Experimental Values, MCT= Helius:MCT results									

F= 10% zeros, 20 ply ; P = 30% zeros, 20 ply ; N=50% zeros, 20 ply ; FP = 10% zeros, 40 ply ; AR = 30% zeros, 40 ply ; AN = 50 % zeros, 40 ply

Helius:MCT Results – Boeing Parameters (Energy Degradation)

Fig 1. F Configuration

Fig 2. P Configuration

Fig 3. N Configuration

Fig 4. FP Configuration

Fig 6. AN Configuration

Helius:MCT Results – Boeing Parameters (Energy Degradation)

Helius:MCT Results – Default Parameters

Fig 4. FP Configuration

Fig 5. AR Configuration

Fig 6. AN Configuration

Cohesive Zones in Helius:MCT

Filtering Results

10 Hz cut-off filter compared to experimental results for F-configuration

Filtering Results

*50% zeros, 20 plies

10 Hz cut-off filter compared to experimental results for N-configuration

Application of filters with varying cut-off frequencies for N-configuration

More Multi-Layer Results

4 layer with varying degradation values: 30% zeros, 20 plies configuration

Abaqus/Explicit Solver Runtime

- Analyses are extremely long
 - the Explicit solver is only conditionally stable and requires an extremely small time step. Critical time step must considered:

$$\Delta t \le \frac{2}{\omega_{max}} \le \Delta t_{cr}$$

• Need to maintain a Quasi-static state: $E \downarrow K \leq 0.1 E \downarrow I$

Multi-Layer Run Time

Table 1. Run Times for Quasistatic models.

Layers (ct.)	Run Time (hr)
2	354
4	672
8	585

More on Damping

Introduce damping into the system?

- Rayleigh damping meant to reflect physical damping in the material, used in steady-state dynamic analyses
 - Mass Proportional Damping model moves through a viscous ether, so any motion causes damping
 - Stiffness Proportional Damping can be thought of as damping associated with material itself
 - Caused excessively longer run times
- Bulk viscosity damping purpose is to improve speed of dynamic events, introduces a small amount of numerical damping to control high frequency oscillations
 - Linear bulk viscosity used to damp ringing
 - Quadratic bulk viscosity Only for solid continuum elements

Damage Propagation Using SCA

SCA Model versus Experimental Panel : 20 plies thick - 30% Zeros Configuration

8 el @ notch tip - 5 el through thickness

Experimental panel

* Damage propagation using instant degradation parameters; however, similar propagation is modeling with energy degradation parameters

