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Motivation, Objective, and Approach 

•  Motivation and Key Issues  
 Develop analysis techniques useful in design of 
 composite aircraft structures under out-of-plane 
 loading (bending and shear) 

•  Objective 
 Determine failure modes and evaluate capabilities of 
 current models to predict failure  

•  Approach 
•  Experiments: Mode 3 fracture 
•  Modeling: Progressive damage development and 

delamination (Abaqus) under Mode 3 fracture 
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Out-of-Plane Shear Mode III Bending 

•  Principal Investigators & Researchers 
–  John Parmigiani (PI); OSU faculty 
–  I. Hyder, N. Atanasov; OSU grad students 

•  FAA Technical Monitor 
–  Curt Davies 
–  Lynn Pham 

•  Other FAA Personnel Involved 
–  Larry Ilcewicz  

•  Industry Participation 
–  Gerry Mabson, Boeing (technical advisor) 
–  Tom Walker, NSE Composites (technical advisor) 
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Project Overview 

•  Phase I (2007-08) 
•  Out-of-plane bending experiments w/composite plates 
•  Abaqus modeling with progressive damage 

•  Phase II (2008-09) 
•  Abaqus modeling with buckling delamination added 
•  Sensitivity study of (generic) material property values   

•  Phase III (2009-10) 
•  Abaqus modeling w/ more delamination interfaces 

4 



Project Overview 

•  Phase IV (2010-11) 
•  Further study of additional delamination interfaces for out-of-

plane bending and initiating vs. propagating toughness 
•  Feasibility of Abaqus/Explicit and XFEM for future work 
•  Sensitivity study using Boeing mat’l property values 

•  Phase V (2011-12) 
•  Complete Out-of-plane shear (mode III) experiments & begin 

preliminary Abaqus modeling 
•  Evaluate the Abaqus plug-in Helius:MCT (Firehole 

Composites) for modeling progressive damage in 
composites and applicability to Out-of-plane bending 
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•  Phase VI (2012-13) 
•  Evaluation of out-of-plane shear  

(mode III) modeling with built in  
capabilities of Abaqus Standard 

•  Evaluation of plug-in Helius: MCT  
(Firehole Composites) for mode III shear 

•  Evaluation for Abaqus Explicit for mode III shear 
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•  Phase VII (2013-14) 
•  Report of methods and results for Phase VI 
•  Exploring the effectiveness of solid vs. continuum shell 

elements in modeling Mode III 
•  Improving Abaqus/Explicit Modeling of Mode III shear 
•  Sensitivity study using Boeing material property values with 

Helius: MCT, original values inaccurate? 
•  Sensitivity study using Boeing material property values with 

Abaqus/Standard, original values inaccurate?   
•  Sensitivity study using published material property values 

and configurations with Abaqus/Standard to determine 
which properties are significant for Mode III shear 

Project Overview 



•  Experimental results: Out-of-plane shear 
•  Evaluation of Abaqus Standard results 
•  Evaluation of Helius: MCT results 
•  Evaluation of Abaqus Explicit results 
•  Current work with Mode III 
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  Today’s Topic 



•  Experimental results: Out-of-plane shear 
•  Evaluation of Abaqus Standard results 
•  Evaluation of Helius: MCT results 
•  Evaluation of Abaqus Explicit results 
•  Current work with Mode III 
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  Today’s Topic 



•  Edge-notched CF panels displaced to maximum load 
•  20 and 40 lamina thick panels with three lay ups: 10%, 30%, & 50% 0° 

plies 
•  Metrics: Applied displacement and applied load 

Notch size: 4” long (101.6 mm)  
End radius: 0.25” (6.35 mm) 

Panel size: 18” (457 mm) 
by 10” (254 mm) 
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  Experimental Results Out-of-Plane Shear 



  
•  Experimental results: Out-of-plane shear 
•  Evaluation of Abaqus Standard results 
•  Evaluation of Helius MCT results 
•  Evaluation of Abaqus Explicit results 
•  Current work with Mode III 
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Today’s Topics 



Evaluation of Abaqus Standard: Computational 
Model 

•  Solver basics: 
•  Uses Newton-Raphson Technique 

to iterate to a converge solution  
for each time increment 

•  Static equilibrium: 
 

•  Uses Hashin failure criteria 
•  Quasi-static analysis and non-linear 

geometry turned on 
•  Panel: Continuum shell, reduced integration 

elements (SC8R) 
•  Grips: Continuum, 3-D, 8 node, reduced integration 

element (C3D8R) 
•  Boundary conditions implemented by grips 
•  Mesh Selection – 20 elements around notch tip,  

based on a linear elastic convergence study 
•  Implemented viscous regularization 
•  Hourglass stiffness scaling based on a converged value 
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Grip allowed to displace in 
z-axis and allowed to rotate 

about x-axis 
Grip is fixed, but allowed 

to rotate about x-axis 



Evaluation of Abaqus Standard: Single Element Layer  
and 3 Element Layer Delamination with VCCT Results 
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No hourglass  
stiffness scaling 

Hourglass stiffness 
factors scaled high 

Experiment based 
interfaces 

Interfaces inserted 
 after 90° plies 

• All models effectively 
captured linear region 
 

• FE models have stiffness 
factors scaled high 
 

• FE material response is 
similar, but 3-layer VCCT 
models capture experiment 
behavior better 
 

• Not all models revealed a 
clear max Linear portion 

captured 

Linear portion 
captured 

3-Layer VCCT:  10% Zeros, 20 Ply 

Single Layer: 10% Zeros, 20 Ply 



Evaluation of Abaqus Standard: Summary of Results 

•  Benefit: Standard predicts max 
load within 20% of experiments 

•  Major Challenges: 
•  Implicit analysis fails to 

converge without excessive 
stiffness factors 

•  After the use of excessive  
stiffness factors, some  
models still fail to converge 

•  Suggestion:  
•  Accuracy can be improved by 

changing VCCT interfaces – but no 
rational for it 

•  Modify convergence parameters 
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•  Experimental results: Out-of-plane shear 
•  Evaluation of Abaqus Standard results 
•  Evaluation of Helius MCT results 
•  Evaluation of Abaqus Explicit results 
•  Current work with Mode III 
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Today’s Topics 



  
•  Helius:MCT was utilized for its recognized convergence capabilities 

and fast solver algorithm for out-of-plane bending  
•  Solver basics: analyzes the composite based on its constituents as well 

as a whole: 

•  Method:  
•  Adapt input file to include Helius:MCT solver 
•  Use default parameters, instant degradation parameters, energy 

degradation parameters  
•  Apply cohesive zones (CZ) 

Average stress  of composite, fiber, and matrix 
respectively 

Volume fractions 
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Evaluation of Abaqus/Standard with Helius:MCT 



Helius:MCT vs. Experimental (instant deg.): 
 10% Zeros, 20 Ply 

Helius:MCT vs. Experimental 
(energy): 

 10% Zeros, 20 Ply 

•  Representative of all trials and 
configurations, including with CZ 

•  Benefits:fast solver: runtime < 
10hrs 

•  Major challenges: 
•  Convergence 
•  Accuracy in certain situations 

•  Suggestions 
•  Shows promise if convergence 

occurs, try different energy 
parameters or degradation values 

•  Possible changes may occur in 
the future to better the solver: 
Autodesk ownership  
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Evaluation of Abaqus/Standard with Helius:MCT 
Results 



•  Experimental results: Out-of-plane shear 
•  Evaluation of Abaqus Standard results 
•  Evaluation of Helius MCT results 
•  Evaluation of Abaqus Explicit results 
•  Current work with Mode III 
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Today’s Topics 
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•  Why use explicit: implementation of element deletion and better convergence 
•  Solver basics: 

•  Analysis uses an explicit, dynamic solver:  
•  Central difference method for enhanced convergence: hope to overcome the issues present 

in Abaqus/Standard 
•  Hashin damage criteria 

Abaqus/Explicit Analysis : Solver Basics and 
Implementation of Filtering 

Comparison of Filters: 
 30% Zeros, 20 Ply 

•  Benefits: convergence in most 
cases 

•  Major challenges: 
•  Extreme amounts of noise 
•  Extremely long runtime 
•  Difficult to determine cut-off 

frequency 
•  Large amounts of data, 10+ Gb ODB  

•  Suggestions 
•  Filtering the data 
•  Implementing more layers 

 



•  Benefits: eliminate distorted 
elements 

•  Major Challenges: 
•  Convergence 
•  Extremely long run times 

•  Suggestion: not much can be 
gained overall from implementing 
multiple layers 

Example of element deletion 
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Abaqus/Explicit Analysis: Implementation of Multiple 
Layers and VCCT 

Comparison of 
VCCT Analyses: 
 30% Zeros, 20 

Ply 

Comparison of Multi-Layer Analyses: 
 10% Zeros, 20 Ply 

3 layer 
VCCT 

Typical experimental 
versus displacement curve 



•  With Standard, it is possible to get max load predictions <20 % of 
experiments, however with major issues 
•  Requires scaling convergence factors which produces excessively stiff 

elements 
•  Some solutions still may not converge 

•  Helius: MCT has severe convergence issues 
•  Explicit can converge and can handle element deformation but other issues 

exist 
•  Noisy solutions with damage 
•  Extremely long run time 

•  Recommendations - Going beyond the built-in capabilities of Abaqus and 
Helius:MCT 
•  Create a user defined element that can more effectively handle deformation 
•  Create a user defined progressive damage criterion based on Tsai Wu, Tsai-

Wu has shown to be more effective then Hashin Damage 
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Summary of Phase VI   



•  Experimental results: Out-of-plane shear 
•  Evaluation of Abaqus Standard results 
•  Evaluation of Helius MCT results 
•  Evaluation of Abaqus Explicit results 
•  Current work with Mode III 
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Today’s Topics 



Current Work with Mode III  

•  Report of methods and results for Phase VI 
•  Exploring the effectiveness of solid vs. shell elements 

in modeling Mode III 
•  Improving Abaqus/Explicit Modeling of Mode III shear 
•  Sensitivity study using Boeing material property 

values with Helius: MCT  
•  Sensitivity study using Boeing material property 

values with Abaqus/Standard  
•  Sensitivity study using published material property 

values and configurations with Abaqus/Standard to 
determine which property values are most significant 
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Current Work with Mode III  

•  Report of methods and results for Phase VI 
•  Exploring the effectiveness of solid vs. shell elements 

in modeling Mode III 
•  Improving Abaqus/Explicit Modeling of Mode III shear 
•  Sensitivity study using Boeing material property 

values with Helius: MCT  
•  Sensitivity study using Boeing material property 

values with Abaqus/Standard 
•  Sensitivity study using published material property 

values and configurations with Abaqus/Standard to 
determine which property values are most significant 
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Solid vs. Shell Elements  

•  Important change: Helius:MCT (Firehole Composites) à Simulation 
Composite Analysis (SCA) [Autodesk] 

•  Only shell elements can be used with Hashin criteria in Abaqus/
Standard and Explicit 

•  Shell vs. solid elements were only compared within SCA 
•  Drastic difference in behavior and increased scatter with solid elements  
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Comparison of solid versus 
shell elements for the 30% 
Zeros, 20 Ply configuration 



•  Attempted to increase in-plane 
mesh density: 64 elements 
around notch tip 

•  Noise still occurred 
•  Noise less evident only because  

fewer frames were extracted from  
.odb files 

•  If more frames were extracted, 
more noise would be evident 

•  Introduce damping into the 
system? 

•  Determine a better mesh  
and work with existing  
filtering techniques? 
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Possible Improvements for Abaqus/Explicit 



SCA Sensitivity Study  

•  Variation of material parameters – obtained maximum 
loads for each configurations with variations of instant 
degradation factors 

•  2k factorial using instant degradation factors w/ 20 plies 
thick - 30% Zeros configuration – no maximum load 
obtained with solid elements. Obtained maximum load 
within 2 percent using 5 elements through the thickness 
and 8 elements around the notch tip; also, damage 
propagation is similar to damage in experimental panels.  
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Percent differences from 
experimental for different 

configurations with varied instant 
degradation parameters 

Comparison of Experimental with SCA 5 element thick, 8 
element around the notch tip: 30% Zeros, 20 Ply 

Parameters used in the 2k 
factorial 

*Hashin and Energy Parameters 
may not be accurate  



SCA Sensitivity Study  

•  2k factorial using energy degradation factors – same results as solid 
vs. shell element investigation for the solid element models within 
the study.  On-going study to determine the effect of number of 
elements through the thickness and energy parameters. However, it 
appears that using energy degradation also has limits: convergence 
issues still exist.  

 

 
 
•  Conclusion: more elements = lower probability of convergence, 

convergence is highly dependent on degradation factors which may 
be different for each configuration, ultimate problem is excessive 
element deformation 
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Parameters used in the 2k 
factorial 



Sensitivity Studies with Abaqus/Standard  

•  Sensitivity study using Boeing material property values with Abaqus/
Standard  

•  210-4  fractional factorial for a 1/16 fraction, resolution IV design  
•  Vary Hashin and energy parameters ± 20% 
•  Ideal future outcome: determine which material properties have the greatest 

effect with the Boeing configurations and what combination of varied 
properties yields the lowest deviation when compared to experimental 
outcomes 

•  Sensitivity study using published material property values and 
configurations with Abaqus/Standard 

•  Will use simpler configurations, as compared to Boeing layups, and fewer plies 
through the thickness: 8-10 plies thick with all 0ºs, 90ºs, ±45º lamina 
orientations, this may provide for clearer results 

•  A variety of loading scenarios will be investigated: Mode III, compression, etc. 
•  Ideal future outcome: define loadings and layups that isolate the Hashin and 

energy parameters leading to an ASTM standard for determination of these 
properties. 
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Questions? 
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? 
? 

? 



Max Force per Test [kN]	  
Layup 
(#plies	  /	  %	  
zero	  degree)	  

1	   2	   3	   4	   5	   6	   MEAN	  

40/50%	   5.552	   5.345	   5.122	   6.103	   5.395	   5.321	   5.473 
40/30%	   5.342	   5.363	   6.061	   5.616	   6.176	   5.690	   5.708 
40/10%	   3.891	   4.161	   4.112	   4.016	   4.277	   4.148	   4.101 
20/50%	   1.751	   1.859	   1.929	   1.691	   1.740	   1.801	   1.795 
20/30%	   1.484	   1.541	   1.541	   1.456	   1.527	   1.638	   1.531 
20/10%	   1.290	   1.215	   1.258	   1.254	   1.198	   1.336	   1.259 

•  Maximum applied load (failure load) 

Out-of-Plane Shear: Summary of Experimental 
Results 



Why Continuum Shell Elements vs. Solid Elements 

•  Solid elements can be laminated but max order of variation of the 
displacement is quadratic 
•  Hence strain variation is at most linear 
•  Insufficient to model variation of strain through thickness of laminate 

•  Potential Solution: stack solid elements at one element per lamina 
•  In-plane dimensions can not be > 10x thickness 
•  Requires a really fine mesh 

•  Alternate Solution: Use continuum shell elements 
•  Does not have the same problems as a solid element 
•  Can have multiple plies through the thickness 
•  Also can be stacked for using with grips and delamination 
•  Laminate stacking sequence was constructed using Composite Layup in Abaqus 

– define material property per ply 
•  MOST IMPORTANTLY: Abaqus built-in limits Hashin Damage to elements 

with plane stress formulation, which include plane stress, shell, continuum 
shell, and membrane elements 



Viscous Regularization Scheme 

•  The viscous regularization scheme helps a model come to 
a converged solution 

•  Viscous coefficient must be small with respect to the time 
increment,  𝑡/𝜂↓𝑖  →∞ 

•  Four viscous coefficients for each damage mode that 
needs to be user specified 

 



Viscous Regularization Scheme 

•  Models involving stiffness degradation may have convergence difficulties 
with implicit solvers 

•  For small time increments, viscous regularization allows the tangents 
stiffness matrix of a mat’l to be positive definite 
•  Tangent stiffness matrix would be symmetric with positive eigenvalues 
•  If matrix is singular and not positive definite, determinant of matrix would 

be zero 
•  Results in dividing by zero during matrix inversion 

•  Technique defines a regularized damage variable, 𝑑↓𝐼↑𝑉  and the rate at 

which the variable changes with time 𝑑 ↓𝐼↑𝑉  
•  User specifies the relaxation time of the viscous system 𝜂↓𝐼  
•  𝑑↓𝐼↑𝑉  is utilized to calculate the damage response of the material 

•  Viscous regularization scheme helps the model converge 
34 

�̇�𝐼𝑣 = 1/𝜂𝐼(𝑑𝐼 − 𝑑𝐼𝑉) 



•  How to determine 𝜂↓𝑓𝑡 ,   𝜂↓𝑓𝑐 ,   𝜂↓𝑚𝑡 ,   𝜂↓𝑚𝑐 ? 
•  Set terms terms to relatively high values to get model 

convergence 
•  For this study, 𝜂↓𝑓𝑡 = 𝜂↓𝑓𝑐 = 𝜂↓𝑚𝑡 =   𝜂↓𝑚𝑐  
•  Parameters were decreased until maximum load 

prediction did not change dramatically 
•  This yielded a starting point in determining appropriate 

values for viscous coefficients 

Viscous Regularization Scheme Cont… 



Scaling Hourglass Stiffness 

•  Default hourglass stiffness was scaled to prevent severe 
element deformation 

•  Pure stiffness approach was recommended for quasi-
static analysis 

•  Three user defined scaling factors 
 Factor Description Typical 

Range 
Hour glass stiffness scaling factor for displacement degree of 
freedom 

0.2 - 3.0 

Hour glass stiffness scaling factor for rotational degree of freedom 0.2 - 3.0 

Hour glass stiffness scaling factor for out-of-plane displacement 
degree of freedom 

0.2 - 3.0 
 



•  Scaling 𝑠↑𝑤  caused solutions to fail prematurely 
•  Only scaled  𝑠↑𝑠  and 𝑠↑𝑟  
•  After scaling to the limits of the recommended value, not 

all stacking sequences converged 
•  After drastically increasing factors, convergence was 

achieved for most models 
•  Factors were selected based on a convergence study 

Scaling Hourglass Stiffness 



•  Begin to see a converging 
trend at 

𝑠↑𝑠 =60,  𝑠↑𝑟 =60,  𝑠↑𝑤 =1  
  

•  This is consistent between 
the three stacking sequences 

  Scaling Hourglass Stiffness 



Abaqus/Standard Damage Path Model 

1 Layer – No SSF 1 Layer – with SSF 

2 Layer – VCCT 3 Layer – VCCT 

10% 0°– 20 ply 



Results Table: Explicit and Helius:MCT 



Fig 6. AN Configuration Fig 5. AR 
Configuration 

Fig 4. FP Configuration 

Fig 1. F Configuration Fig 2. P Configuration Fig 3. N Configuration 

Helius:MCT Results – Boeing Parameters (Energy 
Degradation) 



Fig 6. AN Configuration Fig 5. AR Configuration Fig 4. FP 
Configuration 

Fig 1. F Configuration Fig 2. P Configuration Fig 3. N Configuration 

Helius:MCT Results – Boeing Parameters (Energy 
Degradation) 



Fig 6. AN 
Configuration 

Fig 5. AR Configuration Fig 4. FP Configuration 

Fig 1. F Configuration Fig 2. P Configuration Fig 3. N Configuration 

Helius:MCT Results – Default Parameters 



•  Cohesive zone runs do 
not converge 

•  Deformation in cohesive 
zone areas can be 
observed but it is difficult 
to discern if this 
deformation is 
delamination 

Cohesive Zones in Helius:MCT 



*10% zeros, 20 plies 

Application of filters with varying cut-off 
frequencies for F-configuration 

10 Hz cut-off filter compared to experimental 
results for F-configuration 

Filtering Results   



*50% zeros, 20 plies 

Application of filters with varying cut-off 
frequencies for N-configuration 

10 Hz cut-off filter compared to experimental 
results for N-configuration 

Filtering Results   



Multi-Layer Models : 30% zeros, 20 plies 
configuration 

4 layer with varying degradation values: 30% 
zeros, 20 plies configuration 

 

More Multi-Layer Results   



Abaqus/Explicit Solver Runtime 

•  Analyses are extremely long  
•  the Explicit solver is only conditionally stable and requires an 

extremely small time step. Critical time step must considered: 
 

•  Need to maintain a Quasi-static state: 𝐸↓𝐾   ≤0.1   𝐸↓𝐼  



Layers (ct.) Run Time (hr) 

2  354 

4 672 

8 585 

Table 1. Run Times for Quasi-
static models. 

 
  

Multi-Layer Run Time 



More on Damping 
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Introduce damping into the system? 
•  Rayleigh damping – meant to reflect physical damping in the material, 

used in steady-state dynamic analyses 
•  Mass Proportional Damping – model moves through a viscous ether, so any 

motion causes damping 
•  Stiffness Proportional Damping - can be thought of as damping associated 

with material itself 
•  Caused excessively longer run times 

 
•  Bulk viscosity damping – purpose is to improve speed of dynamic 

events, introduces a small amount of numerical damping to control high 
frequency oscillations 
•  Linear bulk viscosity – used to damp ringing 
•  Quadratic bulk viscosity – Only for solid continuum elements 



Damage Propagation Using SCA  
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* Damage propagation using instant degradation parameters; however, similar 
propagation is modeling with energy degradation parameters 


