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Ut-or=Plane

* Motivation and Key Issues

Develop analysis techniques useful in design of
composite aircraft structures under out-of-plane loading
(bending and shear)

Obijective

Determine failure modes and evaluate capabilities of
current models to predict and model failure

« Approach

— Modeling of progressive damage development and
delamination using ABAQUS

— Experimentation to validate models and to identify key

failure mechanisms
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Principal Investigators & Researchers
— John Parmigiani (PI) & Brian Bay, faculty
— Thomas Wright & Tyler Froemming, grad students

FAA Technical Monitor
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Other FAA Personnel Involved
— Larry llcewicz

Industry Participation
— Gerry Mabson, Boeing (technical advisor)
— Tom Walker, NSE Composites (technical advisor)
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. Phase | (2007-08)

— Out-of-plane bending experiments w/composite plates
— ABAQUS modeling with progressive damage

. Phase Il (2008-09)

— ABAQUS modeling with buckling delamination added
— Sensitivity study of (generic) material property values

* Phase Il (2009-10)

— ABAQUS modeling w/ more delamination interfaces




. Phase IV (2010-11)

— Further study of additional delamination interfaces for
out-of-plane bending

— Initiating vs. propagating toughness values for
out-of-plane bending

— Feasibility of ABAQUS Explicit for future work
— Feasibility of ABAQUS XFEM for future work

— Sensitivity study of Hashin damage parameters using
Boeing mat’ | property values
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 Phase V (2011-12)

— Out-of-plane shear (mode lll)
experiments & ABAQUS modeling

— Evaluate the ABAQUS plug-in Helius MCT (Firehole
Composites) for use in modeling progressive damage
In composites and applicability to this project

— Special cases: all-ninety and all-zero degree plies for
out-of-plane bending




Today’ s Topics
— Out-of-plane shear

= Background
= New Results

— Update on Helius MCT
— Update on applicability of ABAQUS Epr|C|t

= Background
= Conclusions




ackground

— Create an experimental set-up to load notched
laminate plates to failure via out-of-plane shear

— Measure load-displacement and surface strains
— Model in ABAQUS

 Literature Review (selected)

— Jones & Subramonian [1983]
(plexiglass, Al, wood)

— Sutton et al [2007] , Yan et al [2007]
(Al, steel)

— Sutton et al [2001] _
(Al) ‘




* Approach

— Use specimens of size comparable to out-of-plane
bending study (18" x 10” w/ 2" notch)

— Measure surface strains using Digital Image
Correlation (DIC)

— Measure load vs displacement, identify maximum

load
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« Experimental Set-up

— Displace specimen edge using hinged grips
i)

O

— Continuously Measure load vs displacement,
identify maximum load

— Continuously measure surface strains
using Digital Image Correlation (DIC)




« Cameras maintain constant distance to the

sample surface for accurate DIC measurements
Unloaded

Region of Interest
Displacement Loaded

Crosshead
Displacement




* Fracture of plywood test specimens
100 kN Capacity Instron Load Frame

High-Load Precision
Fixed Platen Hlngelzllrmtfrfacesngtweeln
Attached to atens and sample

Load Cell

Moving Platen
Attached to

Crosshead




ckground

 Digital Image Correlation

— Quasi-static loading
» Rate of 25 mm/min crosshead displacement
» Test stopped at dramatic or persistent load drop

— Two-camera surface Digital Image Correlation
» Vic-3D software (Correlated Solutions Inc., Columbia, SC, USA)
= ~70 x 80 mm region of interest surrounding the notch tip

— Large deflection considerations
» ROI moves vertically several centimeters during a test
» Limited depth of field makes ROI focus difficult to maintain
» Cameras on vertically oriented translational stage
= Pulley-linked to achieve %2 crosshead motion rate
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* Previous results

— Extensive preliminary testing was conducted with plywood
panels and salvaged panels from the out-of-plane bending study
(Phase I) to gain experience with experimental set-up. Results of
this work were presented at fall 2011 AMTAS meeting

— Also, additional preliminary testing was conducted in late 2011
and early 2012 to train a new graduate student on the
experimental techniques

— All preliminary testing and training has been completed and
testing of the out-of-plane shear specimens is underway
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- Test Sample Geometry
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- Six panel variations organized into six test groups (N = 36 total).
- Up and Dn (down) reflect panel orientation within text fixture (asymmetric).

- n1, n2, n3 indicate repeated tests of the same panel variation and orientation.
- Series 1 complete at time of presentation submission (26 Mar 2012).
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Initial Results

Load Deflection - All Panel Variations (n=1)
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- Definition of derived parameter, Toughnec?ws -
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- Max load and Toughness
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1.29

- Max Load is highest force level recorded during test.
- Work to Max is the integrated load-deflection trace up to the max load point.
- No variability available yet, just one sample of three repeats tested to submission date.
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Work to Max (J)

362.0

287.8

177.9

147.8

73.8

56.7
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- Correlation between zero-degree plies and strength

Effect of Zero-Degree Plies on Max Load

3 © 40 Plies

20 Plies

Max Load (kN)

0 10 20 30 40 50 60
Zero-Degree Plies (%)

- For both panel types additional zero-degree plies increase the maximum load achieved.
(The curves overlap with 20-ply max load values multiplied by ~ 3)
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Work to Max (J)

3

Correlation between no. zero-degree plies and toughness

Effect of Zero-degree Plies on Work to Max Load

© 40 Plies
120 Plies

(4

£

10 20 30 40 50 60
Zero-degree Plies (%)

- For both panel types additional zero-degree plies increase work to max load.
(The curves overlap with 20-ply work to max values multiplied by ~ 3)
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- Load deflection curve and observed phenomena
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- A: Primary strain build up: 8mm — 25mm

Principle Von Mises

8 mm
Disp.

Range: .0007 - .0038 Range: .0007 -.0028

25 mm
Disp.

Range: .0016 - .0206




- B: First visual fracture: 30mm — 31mm

Principle Strain Von Mises

30 mm
Disp.
Range: .0016 - .0206 Range: .0024 - .0140
31 mm
Disp.

Range: .0017 -.0240 Range: .0024 - .0180




- C: First Noticeable Spike: 42mm — 43mm

Principle Strain Von Mises

42 mm
Disp.

Range: .0005 - .0505 Range: .0014 - .0386

43 mm
Disp.

Range: .0005 - .0670 Range: .0010 - .0402
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- Possible very early sub-surface fracture in linear region
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* QObservations: Initial 40-ply, 10%-0° panel

— Localized strain builds at notch-tip as expected for a geometric
stress concentration

— Evidence of a fracture appears in the full-field measurement very

early in the load sequence
» Before any indication on the load-deflection curve
» Before any fracture is visible at the surface

— The first visible surface fracture appears before any obvious
load-deflection drop

JANNS 7%




« Thoughts for further work on out-of-plane shear...

— ABAQUS modeling to attempt to match load-displacement and
strain field from experiments (this phase and beyond?)

— Use X-ray tomography to map damage region and compare with
ABAQUS predictions (future phase?)

= Damage initiation
= Damage propagation

— Fatigue implications of damage in linear region (future phase?)
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Update on FHelius MICT

Helius is ABAQUS plug-in from Firehole Comp.

Marketed as superior to ABAQUS built-in
capabilities for progressive damage in composites

Evaluation plan

— Use Helius and repeat out-of-plane bending analysis
from earlier phases. Compare to ABAQUS built-in.

— May use for out-of-plane shear & all-90° / all-0° studies

Status

— Some delays at OSU getting set-up , fully functional now

— Emmitt Nelson (Principal Engineer & Chief Technology
Officer @ Firehole) visited OSU on 3/12/12 for consult




icit: Background

Exploration of the feasibility of ABAQUS Explicit
as an alternative to ABAQUS Standard (i.e.
mplicit) was a task in Phase IV (2010-11)

Hope was Explicit would be faster
Results were presented at AMTAS Fall meeting

Questions and comments following the
presentation raised some compelling points, so
follow-up work was conducted in late 2011 and
early 2012

Today’s presentation will include a brief recap of
the task and the results of the additional work




rollow-up on ABAQUS EXxplicit: Background

* Explicit Methods
— Explicit methods include dynamic effects

— If the total time-of-the-simulated-event is sufficiently long
(deformation and motion sufficiently slow), kinetic energy
Is small and quasi-static events can be modeled

— Advantage of explicit method is that it is unconditionally
stable, convergence issues of ABAQUS Standard
(implicit method) are gone

— Disadvantage of Explicit is that the required time
Increment can be very small and run times very long...

— Explicit = headache, Implicit = upset stomach ?7?




rolilow-up on ABAQU-

« Conclusions from all work on Explicit vs. Implicit

— For the material properties of the specimens, if the
actual conditions of the physical experiments were
modeled using Explicit, run times would be several
months (implicit is 1-3 days)

— Methods Considered to shorten Explicit run times

» Shorten model time so it is << actual physical experiment time
— Can be acceptable if quasi-static conditions are maintained
— Quantified by internal vs. kinetic energy

» Mass scaling: Mass in model >> actual physical mass
— Since quasi-static, might be okay (intent is no dynamic effects)

— Very large changes in density are required to achieve the needed
run-time reductions, need to be sure this isn’t affecting results




rollow=-up on ABAQUS E

— Methods to shorten Explicit run times (Con’t)
» Sub-modeling: Run part of model in Explicit, part in Implicit
— Offers best of both worlds...

— May be problematic when changes in model material stiffness
occur between Explicit and Implicit regions
(progressive damage will cause this to happen)

— Methods pursued to shorten Explicit run times
= Shorten model time: Time reduced to a few seconds (KE limit)
» Mass scaling: Mass increased 52000%

— Effect: run times approaching Implicit with comparable
accuracy (one layup examined) but differences between
model and experiment are a concern

— Bottom line: Explicit does not appear to be an attractive
alternative, but additional research necessary to be sure




 Benefit to Aviation

— Provide experimentally-validated FEA analysis
methods for composite materials

— Explore new analysis techniques

— ldentify, via experiment and analysis, failure modes of
composites under relevant loading conditions

— Educate graduate students in relevant topics

 Future needs

— Continue to refine and define appropriate design and
analysis tools for aircraft design and analysis of
composite materials

— Experimentally validate conclusions
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