

Failure of Notched Laminates Under Out-of-Plane Bending. Phase V

2012 Technical Review John Parmigiani & Brian Bay Oregon State University

Failure of Notched Laminates Under Out-of-Plane Bending, all phases

Motivation and Key Issues

Develop analysis techniques useful in design of composite aircraft structures under out-of-plane loading (bending and shear)

Objective

Determine failure modes and evaluate capabilities of current models to predict and model failure

- Approach
 - Modeling of progressive damage development and delamination using ABAQUS
 - Experimentation to validate models and to identify key failure mechanisms

Failure of Notched Laminates Under Out-of-Plane Bending, all phases

- Principal Investigators & Researchers
 - John Parmigiani (PI) & Brian Bay, faculty
 - Thomas Wright & Tyler Froemming, grad students
- FAA Technical Monitor
 - Curt Davies
 - Lynn Pham
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Gerry Mabson, Boeing (technical advisor)
 - Tom Walker, NSE Composites (technical advisor)

Project Overview

- Phase I (2007-08)
 - Out-of-plane bending experiments w/composite plates
 - ABAQUS modeling with progressive damage
- Phase II (2008-09)
 - ABAQUS modeling with buckling delamination added
 - Sensitivity study of (generic) material property values
- Phase III (2009-10)
 - ABAQUS modeling w/ more delamination interfaces

Project Overview

- Phase IV (2010-11)
 - Further study of additional delamination interfaces for out-of-plane bending
 - Initiating vs. propagating toughness values for out-of-plane bending
 - Feasibility of ABAQUS Explicit for future work
 - Feasibility of ABAQUS XFEM for future work
 - Sensitivity study of Hashin damage parameters using Boeing mat' I property values

Project Overview

- Phase V (2011-12)
 - Out-of-plane shear (mode III)
 experiments & ABAQUS modeling
 - Evaluate the ABAQUS plug-in Helius MCT (Firehole Composites) for use in modeling progressive damage in composites and applicability to this project
 - Special cases: all-ninety and all-zero degree plies for out-of-plane bending

Today's Topics

- Today's Topics
 - Out-of-plane shear
 - Background
 - New Results
 - Update on Helius MCT
 - Update on applicability of ABAQUS Explicit
 - Background
 - Conclusions

- Goals
 - Create an experimental set-up to load notched laminate plates to failure via out-of-plane shear
 - Measure load-displacement and surface strains
 - Model in ABAQUS
- Literature Review (selected)
 - Jones & Subramonian [1983] (plexiglass, Al, wood)
 - Sutton et al [2007], Yan et al [2007] (Al, steel)
 - Sutton et al [2001](AI)

- Approach
 - Use specimens of size comparable to out-of-plane bending study (18" x 10" w/ 2" notch)

- Measure surface strains using Digital Image Correlation (DIC)
- Measure load vs displacement, identify maximum load

- Experimental Set-up
 - Displace specimen edge using hinged grips
 - Continuously Measure load vs displacement, identify maximum load
 - Continuously measure surface strains using Digital Image Correlation (DIC)

• Cameras maintain constant distance to the sample surface for accurate DIC measurements

• Fracture of plywood test specimens

100 kN Capacity Instron Load Frame

CECAM

Fixed Platen Attached to Load Cell High-Load Precision Hinge Interfaces Between Platens and Sample

Moving Platen Attached to Crosshead

- Digital Image Correlation
 - Quasi-static loading
 - Rate of 25 mm/min crosshead displacement
 - Test stopped at dramatic or persistent load drop
 - Two-camera surface Digital Image Correlation
 - Vic-3D software (Correlated Solutions Inc., Columbia, SC, USA)
 - ~ 70 x 80 mm region of interest surrounding the notch tip
 - Large deflection considerations
 - ROI moves vertically several centimeters during a test
 - Limited depth of field makes ROI focus difficult to maintain
 - Cameras on vertically oriented translational stage
 - Pulley-linked to achieve ½ crosshead motion rate

- Previous results
 - Extensive preliminary testing was conducted with plywood panels and salvaged panels from the out-of-plane bending study (Phase I) to gain experience with experimental set-up. Results of this work were presented at fall 2011 AMTAS meeting
 - Also, additional preliminary testing was conducted in late 2011 and early 2012 to train a new graduate student on the experimental techniques
 - All preliminary testing and training has been completed and testing of the out-of-plane shear specimens is underway

Test Sample Geometry

Testing Matrix

Layup	# of Plies	% 0 deg	Series 1	Series 2	Series 3	Series 4	Series 5	Series 6
1	40	50	up , n1	dn , n1	up , n2	dn , n2	up , n3	dn , n3
2	40	30	up , n1	dn , n1	up , n2	dn , n2	up , n3	dn , n3
3	40	10	up , n1	dn , n1	up , n2	dn , n2	up , n3	dn , n3
4	20	50	up , n1	dn , n1	up , n2	dn , n2	up , n3	dn , n3
5	20	30	up , n1	dn , n1	up , n2	dn , n2	up , n3	dn , n3
6	20	10	up , n1	dn , n1	up , n2	dn , n2	up , n3	dn , n3

- Six panel variations organized into six test groups (N = 36 total).

- Up and Dn (down) reflect panel orientation within text fixture (asymmetric).
- n1, n2, n3 indicate repeated tests of the same panel variation and orientation.
- Series 1 complete at time of presentation submission (26 Mar 2012).

Initial Results

• Definition of derived parameter, Toughness

Max load and Toughness

Layup	# of Plies	% 0 deg	Max Load (kN)	Work to Max (J)
1	40	50	5.55	362.0
2	40	30	5.34	287.8
3	40	10	3.89	177.9
4	20	50	1.75	147.8
5	20	30	1.48	73.8
6	20	10	1.29	56.7

- Max Load is highest force level recorded during test.
- Work to Max is the integrated load-deflection trace up to the max load point.
- No variability available yet, just one sample of three repeats tested to submission date.

Correlation between zero-degree plies and strength

For both panel types additional zero-degree plies increase the maximum load achieved.
 (The curves overlap with 20-ply max load values multiplied by ~ 3)

Correlation between no. zero-degree plies and toughness

For both panel types additional zero-degree plies increase work to max load.
 (The curves overlap with 20-ply work to max values multiplied by ~ 3)

Load deflection curve and observed phenomena

Visual Inspection

A: Primary strain build up: 8mm – 25mm

•

B: First visual fracture: 30mm – 31mm •

Principle Strain 30 mm Range: .0016 - .0206 Von Mises

Range: .0024 - .0140

Disp.

C: First Noticeable Spike: 42mm – 43mm •

42 mm Disp.

Von Mises

Range: .0014 - .0386

• Possible very early sub-surface fracture in linear region

- Observations: Initial 40-ply, 10%-0° panel
 - Localized strain builds at notch-tip as expected for a geometric stress concentration
 - Evidence of a fracture appears in the full-field measurement very early in the load sequence
 - Before any indication on the load-deflection curve
 - Before any fracture is visible at the surface
 - The first visible surface fracture appears before any obvious load-deflection drop

- Thoughts for further work on out-of-plane shear...
 - ABAQUS modeling to attempt to match load-displacement and strain field from experiments (this phase and beyond?)
 - Use X-ray tomography to map damage region and compare with ABAQUS predictions (future phase?)
 - Damage initiation
 - Damage propagation
 - Fatigue implications of damage in linear region (future phase?)

Update on Helius MCT

- Helius is ABAQUS plug-in from Firehole Comp.
- Marketed as superior to ABAQUS built-in capabilities for progressive damage in composites
- Evaluation plan
 - Use Helius and repeat out-of-plane bending analysis from earlier phases. Compare to ABAQUS built-in.
 - May use for out-of-plane shear & all-90° / all-0° studies
- Status
 - Some delays at OSU getting set-up , fully functional now
 - Emmitt Nelson (Principal Engineer & Chief Technology Officer @ Firehole) visited OSU on 3/12/12 for consult

Update on ABAQUS Explicit: Background

- Exploration of the feasibility of ABAQUS Explicit as an alternative to ABAQUS Standard (i.e. Implicit) was a task in Phase IV (2010-11)
- Hope was Explicit would be faster
- Results were presented at AMTAS Fall meeting
- Questions and comments following the presentation raised some compelling points, so follow-up work was conducted in late 2011 and early 2012
- Today's presentation will include a brief recap of the task and the results of the additional work

Follow-up on ABAQUS Explicit: Background

- Explicit Methods
 - Explicit methods include dynamic effects
 - If the total time-of-the-simulated-event is sufficiently long (deformation and motion sufficiently slow), kinetic energy is small and quasi-static events can be modeled
 - Advantage of explicit method is that it is unconditionally stable, convergence issues of ABAQUS Standard (implicit method) are gone
 - Disadvantage of Explicit is that the required time increment can be very small and run times very long...
 - Explicit = headache, Implicit = upset stomach ???

Follow-up on ABAQUS Explicit: Conclusions

- Conclusions from all work on Explicit vs. Implicit
 - For the material properties of the specimens, if the actual conditions of the physical experiments were modeled using Explicit, run times would be several months (implicit is 1-3 days)
 - Methods Considered to shorten Explicit run times
 - Shorten model time so it is << actual physical experiment time
 - Can be acceptable if quasi-static conditions are maintained
 - Quantified by internal vs. kinetic energy
 - Mass scaling: Mass in model >> actual physical mass
 - Since quasi-static, might be okay (intent is no dynamic effects)
 - Very large changes in density are required to achieve the needed run-time reductions, need to be sure this isn't affecting results

Follow-up on ABAQUS Explicit: Conclusions

- Methods to shorten Explicit run times (Con't)
 - Sub-modeling: Run part of model in Explicit, part in Implicit
 - Offers best of both worlds...
 - May be problematic when changes in model material stiffness occur between Explicit and Implicit regions (progressive damage will cause this to happen)
- Methods pursued to shorten Explicit run times
 - Shorten model time: Time reduced to a few seconds (KE limit)
 - Mass scaling: Mass increased 52000%
- Effect: run times approaching Implicit with comparable accuracy (one layup examined) but differences between model and experiment are a concern
- Bottom line: Explicit does not appear to be an attractive alternative, but additional research necessary to be sure

Looking Forward

- Benefit to Aviation
 - Provide experimentally-validated FEA analysis methods for composite materials
 - Explore new analysis techniques
 - Identify, via experiment and analysis, failure modes of composites under relevant loading conditions
 - Educate graduate students in relevant topics
- Future needs
 - Continue to refine and define appropriate design and analysis tools for aircraft design and analysis of composite materials
 - Experimentally validate conclusions

End of Presentation.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

