

VARTM Variability and Substantiation

D. Heider, J.W. Gillespie

May 19th, 2010 University of Delaware Center for Composite Materials

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Dirk Heider (PI)
 - John W. Gillespie, Jr. (Co-PI)
- FAA Technical Monitor
 - Curtis Davies
 - David Westlund
- Industry Participation
 - Gore (Munich, Germany)
 - Provided membrane materials, access to instrumentation and technical input
 - Donaldson Membranes (Warminster, PA)
 - Provided membrane materials
 - Hexcel (Seguin, Texas)
 - Provided resin and fabric material and technical input
 - Cytec (Anaheim, CA)
 - Provided resin and fabric material and technical input
 - EADS (Germany)
 - Provided technical and financial input
 - Boeing (Philadelphia, PA)
 - Provided technical input

AEROSPACE VARTM'D COMPONENTS

- VARTM process:
 - Main advantages: low cost, high fiber volume fraction, large scale parts
 - Still some limitations
 - Limited fundamental understanding of process
 - High variability
 - From part to part
 - In the same part
 - Automation is still limited
 - Certification for new aerospace applications

APPROACH

- Establish the fundamental understanding of the various VARTM processes
 - Modeling the full VARTM process to understanding process physics including
 - Pre-Infusion (Compaction Behavior)
 - Infusion
 - Flow model is fully developed for SCRIMP, VAP, and CAPRI process
 - Effect of dual-scale flow behavior has to be further studied to better understand micro-void formation
 - Post-Infusion
 - Resin Bleeding
 - Evaluate other process recommendations
- Optimize membrane material (VAP)
 - Understand membrane mechanisms
 - Recommend material improvements
- Establish an elevated temperature VARTM workcell for toughened epoxies

- 1. Seemans Resin Infusion Molding Process (SCRIMP)
 - Use of Distribution Media
 - Patent held by TPI Inc.
- 2. Vacuum-Assisted Processing (VAP)
 - Use of an additional membrane
 - Patents held by EADS
 - Reduces Void Content, Improves Process robustness
- 3. Controlled Atmospheric Resin Infusion Process (CAPRI)
 - Reduced pressure differential
 - Patent held by the Boeing Co.
 - Reduces thickness gradient, improves fiber volume fraction variation

Process Variations: The CAPRI Process

CAPRI Patent held by Boeing

Woods, J., Modin, A. E., Hawkins, R. D., Hanks, D. J., "Controlled Atmospheric Pressure Infusion Process", International Patent WO 03/101708 A1.

Effect of Debulking on Thickness and Permeability

- The thickness and spring-back behavior is greatly reduced during debulking
 - Increases Fv
 - Reduces thickness gradient
 - Decreases permeability

CAPRI Flow Behavior

FFLAN

- Flow behavior changes due to reduced pressure gradient and decreased permeability
- 1-D analytical flow model has been developed and can predict lead length and fill time

Thickness Behavior Comparison between CAPRI and SCRIMP

ΓΕΓΔΙ

- Debulking can greatly increase final fiber volume fraction
- The thickness gradient is reduced when the CAPRI pressure is applied (insignificant for the debulked case)

MEMBRANE-BASED VARTM PROCESSING (VAP)

- Utilize membrane cover to allow continues degassing and uniform vacuum pressure during VARTM processing
 - Reduces void content
 - Improves uniformity (fiber volume fraction, thickness)
 - Eliminates dry-spots

Membrane

Tool

MAIN REQUIREMENTS OF THE MEMBRANE

•Desirable Characteristics for a membrane used in VARTM:

- Gas permeable material
 - OR High air permeability through the thickness
- Resin-proof material
 - OR Low liquid/resin permeability through the thickness

Compatibility with resin

- Compatible: The resin does not go through the membrane and is forced into the part
- Incompatible: The resin penetrates the membrane

www.gore-tex.co.uk

Statistical Analysis of Membrane

Permeability vs Pressure

ME TO PENETRATE THE MEMBRANE

- Analysis and model implementation can be used to predict membrane performance for a wide variety of resin choices and process approaches (includes higher pressure application such as autoclave)
- Can be used to used to optimize membrane behavior
 - Increase contact angle, surface tension
 - Decrease "tail" of pore size distribution
- Effect of stretching can be incorporated in model (TBD)

Penetration Time vs. Pressure

Processing Steps for Modeling

- Models (analytical and FE) have been developed to capture the process physics of the various processing steps
- Degassing requirements and material drying has not been modeled yet but are empirically evaluated

DESIGN TOOL @ UD-CCM

•Database

•Material Selection

•Design Interface

FE Element Simulation (LIMS)

Complex Part Shapes

- LIMS can handle complex 3D part geometry
 - Not only Shell like parts
 - T stiffeners, branching, inserts ...
- Any local variation of material properties is possible
- Combination of 1D and 2D elements may be used to add LCM-specific features to 2D or 3D mesh without numerical difficulties
 - Racetracking
 - Distribution Media
 - Dual-Scale Flow

- Sensor Based Infusion Technology
- Robust System Construction
- Re-Configurable Infusion Schemes
- Improved Resin Mixing System
- Statistical Data Sampling During Infusion 8
- Electronic Work Instruction

TRANSITIONED FOR R&D AND PRODUCTION AT DASAULT AVIATION (Paris, France) Also available to other companies

Automated Layup: Key to Improved Repeatability

•Material Layup is often the cycle time driver.

•Automation is key for reduced cycle time and improved repeatability !!!

Material Handling Issues/ Opportunities

Flat pattern generation, cuttingand draping analysis

Flat pattern generation can be automated for

Pattern can be cut net-shape on ply cutter

Pattern can be directly projected on tool to

→ ensures correct draping and preform assembly

improve placement accuracy

complex geometries

Material Placement

Photos courtesy of

- Robotic placement improves
 - Repeatability
 - Reduces potential for defects
 - Pin holes
 - Missed layers
 - Cost reduction

Ŀ

The Joint Advanced Materials and Structures Center of Excellence United Defense

A Look Forward

- Benefit to Aviation
 - Improved fundamental understanding of VARTM processing to evaluate benefits and disadvantages of various process variations
 - All processing steps are important including pre-infusion, infusion and postinfusion
 - Membrane processing shows promise to improve repeatability due to continuous surface venting
 - Reduce part-to-part variations / improve allowables
 - Automated VARTM will allow QA/QC of part production reducing costs and improve quality while maintaining traceability