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Damage Tolerance Testing and Analysis Protocols for Full-Scale
Composite Airframe Structures under Repeated Loading

* Motivation and Key Issues

Damage growth mechanics, critical loading modes and load spectra for
composite and metal structure have significant differences that make
the certification of composite-metal hybrid structures challenging, costly
and time consuming.

Data scatter in composites compared to metal data is significantly
higher requiring large test duration to achieve a particular reliability that
a metal structure would demonstrate with significantly low test duration.

Metal and composites have significantly different coefficient of thermal
expansion (CTE)

Mechanical and thermal characteristics of composites are sensitive to
temperature and moisture

Need for an efficient certification approach that weighs both the
economic aspects of certification and the time frame required for
certification testing, while ensuring that safety is the key priority




Certification of Composite-Metal Hybrid Structures

* Primary Objective
— Develop guidance materials for analysis and large-scale test
substantiation of composite-metal hybrid structures.
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« Secondary Objectives @
— Evaluate the damage mechanics and competing failure modes
(origination and propagation)
= Mechanical & bonded joints
— Data scatter and reliability analysis, i.e., LEF
— Modifications to load spectra and application LEF

— Address mismatched Coefficient of Thermal Expansion (CTE) and
ground-air-ground (GAG) effects

— Impact of environmental effects on hybrid structures - .= =
= Environmental compensation factor (ECF) p—
= Test environments

Carbon
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Approach

Metallic COMPOSITES

- Guidance is need to make
sure that both metal and
composite are designed to
pass testing and
certification requirement.

Compliance
with
Regulations

Certification

Inspections - Define procedures
necessary to support testing
and building block

approaches
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Certification Cost & Time

~ Certification Time

Full-Scale Test
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Full-scale test is a significant portion of the overall budget

Improvements to full-scale test duration =» Reduction to overall test timeline
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Considerations for Metal/Composite Hybrid Structure

Current industry practice generally
avoids addressing metallic and
composite fatigue with the same
article

Emerging approaches that may

enable addressing metallic and

composite fatigue with the same

article (for composite-dominant

designs)

— Option 1: Drive LEFs low enough

(either via increasing the test
duration and/or via thorough testing

to substantiate lower values) to avoid
overload concerns in metal

— Option 2: Multi-LEF Approach

— Option 3: Deferred Spectrum
Approach

These options can be combined

Representative Design
Details & Loading Modes
for Structure

—
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Load Enhancement | Life Factor
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Spectrum -
Option 1
\ 4
Truncation Truncated
Load Multi-LEF**
(Low Loads) Spectrum [Figure 12.6.3.4.4(a)]
Option 2

Clipping*
(for Hybrid
Structures)

omposite loads
are above clipping
level for metals

omposite loads
are above clipping
level for metals

NO NO

Advanced spectrum
analysis and test
methodologies are
required

Option 3

Fatigue Test P
Spectrum -

\ 4

NOTES:
* Clipping of high loads are only required for metals; composite loads should not be clipped.
** Further analysis and supporting experiments are required prior to applying these methods.
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Single Article for Composite-Metal Hybrid FSFT
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Durability Demonstration
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Limit Load Test

Metal Residual Strength
[ k3*Limit Load Test

[ Composite Residual Strength ]
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Composite Structure Certification
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Deferred Severity Spectrum for Hylbrid
Structures

|C omposites spectrum

Load f | Metals spectrum

De5|gned limit load (DLL)
Cllppmg level (metals)
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Not to scale
Method 1: Life Factor Approach

Method 2: Deferred High Loads
Deferred high loads
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Method 3: Deferred High Loads with Load Life Shift (Composite Spectrum only)
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Operating Stress/Strain Levels

T aneem,
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Load Sequencing Effects — Open Hole Tension/
Compression (UNI) — Spectrum Fatigue Results

dvanced Materials in
Transport Aircraft Structures

Fatigue Profile Spﬁ::ze” Block 1 Block2 | Block3 | Block4 | Block5 T‘(’;‘éi S°f Comments
5 UNKEX-11 3000 400010 | 116330 | 400010 | 116330 | 1035680 Survived
5 UNKEX-13 3000 400010 | 116330 | 400010 | 116330 | 1035680 Survived
5 UNIEX-14 3000 400010 | 116330 | 400010 | 116330 | 1035680 Survived
5 UNKEX-17 3000 400010 | 116330 | 400010 | 116330 | 1035680 Survived
5 UNKEX-19 3000 400010 | 116330 | 400010 | 116330 | 1035680 Survived
5 UNKEX-21 3000 400010 | 116330 | 400010 | 116330 | 1035680 Survived

UNFEX-12 | 400010 | 116330 | 400010 | 116330 2775 1035455 Failed
UNFEX-15 | 400010 | 116330 | 400010 | 116330 3000 1035680 Survived
UNFEX-16 | 400010 | 116330 | 400010 | 116330 472 1033152 Failed
UNFEX-18 | 400010 | 116330 | 400010 | 116330 543 1033223 Failed
UNFEX-20 | 400010 | 116330 | 400010 | 116330 2447 1035127 Failed
UNFEX-22 | 400010 | 116330 | 400010 | 116330 3000 1035680 Survived
JWS  om
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Stiffness Degradation

Profile 5 vs Profile 6
Stiffness Degradation (Tension)

—

)
—_
—_— o =

Il

140000

120000

100000
0 200000 400000 600000 800000 1000000 1200000
# of Cycles

—+—UNI-EX-12 -=-UNI-EX-15 ——UNI-EX-16 ——UNI-EX-11 —~UNI-EX-13 ——UNI-EX-14

A enterof Excellence
Advanced Materials in
Transport Aircraft Structures 1 2

JOINT ADVANCED MATERIALS & STRUCTURLS
ENTER OF EXCELLENCE




Load Sequencing Effects — Open Hole Tension/
Compression (UNI) - Inspections
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Load Sequencing Effects — Open Hole Tension/
Compression (PW)
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Load Sequencing Effects - Compression After Impact

Constant Amplitude (70% CAI SS)

Constant Amplitude (55% CAI SS)
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Developing residual strength models
based on Sendeckyj analysis
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Residual Strength Degradation Models

Stress/Strength
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Damage Area(in?)

Cytec 5320/T650 UNI-CAI Testing
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Cytec 5320[T 650 UNI-CAI Testing
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X-Ray CT-Scans

Collaboration with i g | 7
David Mollenhauer 5 3 _ ,
(AFRL) e y

Loading Direction
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Additional CT-Scans
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UNI-OHC-09 (Selected X-Ray CT-Scans)




Summary

« Multi-LEF and Deferred severity spectrum approaches
can be applied to hybrid structures to prevent metal
overloads

— Smart Testing = Significantly reduce the total test duration and
cost of FSFT

— Applicable for composite-dominant designs

— Need analysis/tests to justify spectrum modifications
» Sequencing effects
= X-Ray CT-Scans
— Effects of additional test duration on metals
» |nvalidation of metal test when high loads are applied (life extension)
« Additional considerations
— Competing failure modes
— Effects of CTE mismatch

— Effects of environment
o WS e




On-Going Efforts

 Complete OH-PW, CAI-UNI, and CAI-PW

» Failure analysis /f“
— C-scans f 4

. . iz

— Stiffness degradation i

— X-ray CT-scans
« Hybrid Fatigue Investigation

— Single-shear two-fastener bearing configuration
» Failure analysis

— Effects of CTE mismatch
» RTA and CTA fatigue comparison

« Collaboration with AFRL (David Mollenhauer) and UTA
(Prof. Endel larve) for progressive damage modeling of

composites
R T 3




Looking Forward

 Benefit to Aviation

— Efficient certification approach that weighs both the economic
aspects of certification and the time frame required for
certification testing, while ensuring that safety is the key priority.

» Guidance materials for analysis and large-scale test substantiation of
composite-metal hybrid structures.

= Damage mechanics and competing failure modes (origination and
propagation)
= Guidance for hybrid load spectra and application LEF

* Future needs
— Guidance on spectrum development
— Validated fatigue and residual strength analysis methods

Advanced Materials in
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