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Environmental Compensation Factor Influence on 
Composite Design and Certification 

•  Motivation and Key Issues  
–  Moisture absorption characteristics of composites, 

which follow Fick’s second law, can be coupled with 
realistic environmental data to design structurally 
efficient and economic composite components. This 
research will provide guidance to establish practical 
levels of moisture content and corresponding 
environmental compensation factors for composite 
structures.  

•  Objective 
–   Develop guidelines for the development of 

environmental enhancement factors for static strength 
loading  



Approach 

•  Develop guidelines for the development of environmental 
enhancement factors for static strength loading 

•  Use data developed at lamina, laminate, element and 
subcomponent to demonstrate application 

•  Incorporate a probabilistic model, which accounts for the 
environmental factors affecting composite design 

•  Address any additional research & development needs with 
environmental factors as budget allows, i.e. effects of non-Fickian 
processes such as capillary action along fiber/matrix interface and 
through cracks and voids, effects of surface cracking in the resin 
at free edges due to swelling stresses resulting from moisture 
desorption on subsequent moisture absorption, environmental 
factors for adhesive joints and sandwich construction, etc.  
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Environmental Compensation Factor Influence on 
Composite Design and Certification 

•  Principal Investigators & Researchers 
–  John Tomblin, PhD, and Waruna Seneviratne, PhD 
–  Upul Palliyaguru, Shawn Denning, Janith Senaratne 

•  FAA Technical Monitor 
–  Curtis Davies, Daivd Westlund 

•  Other FAA Personnel Involved 
–  Larry Ilcewicz, PhD, and Peter Shyprykevich (ret.) 

•  Industry Participation 
–  Cessna, Bombardier, Hawker Beechcraft, and Spirit Aerosystems 
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Environmental load factor 

•  to satisfy FAA certification requirements for composite structures, 
FARs require compliance with 23.573, 23.603, 23.613 and 23.619 
(can apply also to Part 25 aircraft).  General guidelines for a 
composite structure should be considered which are over what is 
normally done for metallic certifications (i.e., account for the 
difference between composite and metallic structures in certification) 

•  an approach which may be used, when combined with analytical 
modeling, is to apply these “overloads” within the model to 
demonstrate compliance after a successful static structural test (may 
also be applied during the test) and demonstrating positive margins 
of safety throughout the structure  



Static Load Factor 
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SLF = Static Load Factor  » represents the difference in load factor between a composite and 
metallic structure 
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Design & Certification 
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Analysis Assumptions 
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•  Fickian Diffusion 
–  Assumptions 

§  Moisture concentration 
behaves according to: 

§  Diffusion behavior constant through thickness 
–  Cloth vs. Uni differences are negligible 

§  Steady state only 
§  Two sided diffusion 
§  Through the thickness diffusion dominates 

–  End effects neglected 
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Saturation Levels 
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Moisture Absorption 
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Moisture Absorption for Full Scale Articles 

•  What is realistic? 
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Environmental Data 
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Service life Assumptions 
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Diffusivity Constant 
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	  	  	  	  -‐60°F 1 1 1
	  	  	  	  -‐40°F 1 1 1
	  	  	  	  -‐20°F 1 1 1
	  	  	  	  	  40°F 1 1 1 1 1 1
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Diffusivity Constant - Absorption 
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Diffusivity Constant - Summary 
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Aircraft (Fleet) Environmental Exposure 
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Cyclic Moisture Distribution 
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Effects Moisture Distribution TTT 
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FLUID-INGRESSED SANDWICH 
STRUCTURE 
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Fluid-Ingressed Sandwich Mode I Testing 
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Material Core Type 
Core 

Thickness 
(in) 

Facesheet 
(per F/C) 

Cell Size 
(in) 

Core 
Density 

Static Fatigue 

Baseline Fluid 
Ingressed Baseline Fluid 

Ingressed 
HRH-10 Hexagonal 0.5 4-ply [0/45]S   1/8  2.0         

3.0 6 6 6 6 
6.0         

  3/16 2.0 6 6 6 6 
3.0 6 6 6 6 
6.0 6 6 6 6 

  3/8  2.0         
3.0 6 6 6 6 
6.0         

16-ply 
[0/45]4S 

  1/8  2.0         
3.0 6 6 6 6 
6.0         

  3/16 2.0 6 6 6 6 
3.0 6 6 6 6 
6.0 6 6 6 6 

  3/8  2.0         
3.0 6 6 6 6 
6.0         

OX-Core 0.5 4-ply   3/16 2.0         
3.0 6 6 6 6 
6.0         

16-ply   3/16 2.0         
3.0 6 6 6 6 
6.0         
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SCB Mode I RTD Summary 
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SCB Mode I RTD Summary 
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SCB Mode I (RTD) Fatigue Summary 
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Failure Mode(s) 
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Skydrol Conditioning of SCB Specimens 
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Skydrol Conditioning Study 
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Condi&oning	  
Timeframes	  

Temperature	  
[°F]	  

Skydrol	  [%]	   Water	  [%]	  

Con&nuous	  

70	  
75	   25	  
50	   50	  
25	   75	  

120	  
75	   25	  
50	   50	  
25	   75	  

160	  
75	   25	  
50	   50	  
25	   75	  

Chamber	  &ll	  Acidity	  
Saturate	  and	  Then	  

Room	  Temp	  

120	  
75	   25	  
50	   50	  
25	   75	  

160	  
75	   25	  
50	   50	  
25	   75	  

2	  Weeks	   160	   50	   50	  

After 5 Weeks 
70 °F 
 
 
 
 
 
120 °F 
 
 
 
 
 
160 °F 



Skydrol Conditioning 
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Acidity Level Monitoring 

•  Samples were conditioned 
continuously at prescribed 
temperature 
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Acidity Level Monitoring 

•  Samples were conditioned at 
prescribed temperature and 
kept at room temperature after 
reaching targeted acidity level 
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Skydrol Conditioning Procedure 

•  Mix the needed amount of 50% Skydrol and 50% water solution in the 
air tight container. 

•  Place the container inside the conditioning camber at 160 °F for 14 
days, mixing thoroughly once a day. 

•  Remove the container from the conditioning camber and let set at 
room temperature until cooled. 

•  The solution should now be at 3-4 pH and will remain so for at least 90 
days, if stored at room temperature. 
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Summary 
•  Fickian Diffusion is effected by temperature, moisture 

concentration, and pressure 
–  Environmental history on ground condition is important in 

tracking moisture content through the thickness of composite 
parts 

•  Guidelines for design and certification of composite 
structures related to environmental knockdown based on 
practical levels of moisture content and operational 
usage is in progress 

•  SCB Testing  
–  Fluid ingression phenomenon and the progressive damage 

growth due to entrapped fluids in sandwich structures 
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Looking Forward 

•  Benefit to Aviation 
–  Systematic approach for developing environmental knockdown 

factors based on structural details 
–  Possibility of extending the methodology for life extension 

strategies 
–  Guidelines for substantiating sandwich structures 

§  Fluid ingression phenomenon 
§  GAG effects on damage growth 
§  Effects of geometry and sandwich parameters on fracture 

toughness and damage growth rates 

•  Future needs 
–  Test articles representing modern day composite structures 
–  Environmental history data 



End of Presentation. 
 

Thank you. 
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