

Environmental Compensation Factor Influence on Composite Design and Certification

2012 Technical Review Waruna Seneviratne & John Tomblin Wichita State University/NIAR

Environmental Compensation Factor Influence on Composite Design and Certification

Motivation and Key Issues

- Moisture absorption characteristics of composites, which follow Fick's second law, can be coupled with realistic environmental data to design structurally efficient and economic composite components. This research will provide guidance to establish practical levels of moisture content and corresponding environmental compensation factors for composite structures.
- Objective
 - Develop guidelines for the development of environmental enhancement factors for static strength loading

Approach

- Develop guidelines for the development of environmental enhancement factors for static strength loading
- Use data developed at lamina, laminate, element and subcomponent to demonstrate application
- Incorporate a probabilistic model, which accounts for the environmental factors affecting composite design
- Address any additional research & development needs with environmental factors as budget allows, i.e. effects of non-Fickian processes such as capillary action along fiber/matrix interface and through cracks and voids, effects of surface cracking in the resin at free edges due to swelling stresses resulting from moisture desorption on subsequent moisture absorption, environmental factors for adhesive joints and sandwich construction, etc.

Environmental Compensation Factor Influence on Composite Design and Certification

- Principal Investigators & Researchers
 - John Tomblin, PhD, and Waruna Seneviratne, PhD
 - Upul Palliyaguru, Shawn Denning, Janith Senaratne
- FAA Technical Monitor
 - Curtis Davies, Daivd Westlund
- Other FAA Personnel Involved
 - Larry Ilcewicz, *PhD*, and Peter Shyprykevich (ret.)
- Industry Participation
 - Cessna, Bombardier, Hawker Beechcraft, and Spirit Aerosystems

Environmental load factor

- to satisfy FAA certification requirements for composite structures, FARs require compliance with 23.573, 23.603, 23.613 and 23.619 (can apply also to Part 25 aircraft). General guidelines for a composite structure should be considered which are over what is normally done for metallic certifications (i.e., account for the *difference* between composite and metallic structures in certification)
- an approach which may be used, when combined with analytical modeling, is to apply these "overloads" within the model to demonstrate compliance after a successful static structural test (may also be applied during the test) and demonstrating positive margins of safety throughout the structure

Static Load Factor

SLF = Static Load Factor » represents the difference in load factor between a composite and metallic structure

(lamina or laminate), failure mode, damage Based upon some existing data, this could be as high as 1.32 C_{composite} composite composite Room for improvement in this variability temperature moisture SLF =metals metals *metals* var*iablity* tenperature nloisture **Based on percentage of** strength at 180 °F, approximately 1.04

Will depend on material system, layup

based upon failure mode in temperature (based upon FEM M.S. model) and amount of moisture actually expected in structure during lifetime

Design & Certification

Strain

Analysis Assumptions

- Diffusion behavior constant through thickness
 - Cloth vs. Uni differences are negligible
- Steady state only
- Two sided diffusion
- Through the thickness diffusion dominates
 - End effects neglected

Saturation Levels

> G(T,t) is the ratio of moisture level at a given time to the saturated moisture content (M_m)

Moisture Absorption

Moisture Absorption for Full Scale Articles

• What is realistic?

	Years for 99% Saturation					
Laminate Thickness (in)	0.1032	0.4128	3.0444			
90°F/85%RH	0.8	12.8	696.6			
145°F/85%RH	0.3	5.0	269.4			

Environmental Data

San Gorgonio 64,164 Obs., 1 Mar 1989 - 31 May 1999 Glacier Natl. Park 35,495 Obs., 20 Jan 1989 - 31 May 1999

Service life Assumptions

- Assume 10 years continuously in worst case conditions (conservative!).
 - <u>This does not indicate a 10 year service life</u>. Merely the worst case that would happen in 10 years with no time at altitude or other drier locations.
 - Max. saturation levels and conditioning criterion
 - Condition a representative article such that it reaches the same saturation level expected for the full scale aircraft in a worst case environment

Diffusivity Constant

	Initial	Dry Condit	ioning	Initial Wet Conditioning					
Chamber Temperature (°F)	(18	80°F / 85% I	RH)	(180°F / 0% RH)					
	Specim	nen Config	uration	Specimen Configuration					
	Fully	Sides	Fully	Fully	Sides	Fully			
	Exposed	Covered	Covered	Exposed	Covered	Covered			
-60°F				1	1	1			
-40°F				1	1	1			
-20°F				1	1	1			
40°F	1	1	1	1	1	1			
90°F	1	1	1	1	1	1			
145°F	1	1	1	1	1	1			
160°F	1	1	1	1	1	1			
	4	4	4	7	7	7			
Total Specimens Required		12		21					
	33								

Advanced Materials in

Transport Aircraft Structures

Diffusivity Constant - Absorption

Diffusion Constant for Carbon/Epoxy [+45/0/-45/90]4s 32-Ply Laminates as a function of Temperature

Diffusivity Constant - Desorption

Diffusion Constant for Carbon/Epoxy [+45/0/-45/90]4s 32-Ply Laminates as a function of Temperature

Diffusivity Constant [in²/day]

Diffusivity Constant - Summary

Diffusion Constant for Carbon/Epoxy [+45/0/-45/90]4s 32-Ply Laminates as a function of Temperature

Advanced Materials in

Transport Aircraft Structures

Aircraft (Fleet) Environmental Exposure

Cyclic Moisture Distribution

Advanced Materials in

Transport Aircraft Structures

Effects Moisture Distribution TTT

Compression Modulus [Msi]

2

1

0

Moisture Distribution

16 Ply Compression Modulus [Msi]

16 Ply Flexural Modulus [Msi] 32 Ply Flexural Modulus [Msi]

32 Ply Compression Modulus [Msi]

20

FLUID-INGRESSED SANDWICH STRUCTURE

21

Fluid-Ingressed Sandwich Mode | Testing

		Core		G 11 G	G	St	atic	Fat	tigue				
Material	Core Type	Thickness (in)	Facesheet (per F/C)	(in)	Core Density	Baseline	Fluid Ingressed	Baseline	Fluid Ingressed	2.30			
HRH-10	Hexagonal	0.5	4-ply [0/45]s	1/8	2.0					2.00	۵ ۵		\$
					3.0	6	6	6	6			<u>م</u>	\$
					6.0							8	
				3/16	2.0	6	6	6	6				
					3.0	6	6	6	6				
					6.0	6	6	6	6	0.50 - 4			
				3/8	2.0								
					3.0	6	6	6	6	45 55 65	75 85	95	105
					6.0						Crack Length a [mm]		
			16-ply	1/8	2.0								
			[0/45] _{4S}		3.0	6	6	6	6	15.02			<u></u>
					6.0						1563		
				3/16	2.0	6	6	6	6	1603 -			
					3.0	6	6	6	6				
					6.0	6	6	6	6	1504	A T		
				3/8	2.0					limm/coki			
					3.0	6	6	6	6	1£05 -			
					6.0					ہ `۵			
	OX-Core	0.5	4-ply	3/16	2.0					1£06 -	<u>≹^</u> ∆		
					3.0	6	6	6	6				
					6.0					1507			
			16-ply	3/16	2.0					1000	10000 G _{ic} [J/m ²]		100
					3.0	6	6	6	6				
					6.0								
					Sub Totals	1	44	1	44				
				Tota	l Specimens		23	88		1 ▲↑↑↑	Î Î ^ 🔺		
											━━━━━━━━━━━━ (
									↑			\uparrow	↑ ↑

CECAM

SCB Mode I RTD Summary

							St		Fatigue		
Material	Core Type	Core	Eacoshoot	Cell Size (in)	Core Density	Baseline			Fluid Ingressed	Baseline	Fluid Ingressed
Wateria		Thickness (in)	racesneet			GIC (NL) [in-lb/in ²]	GIC (VIS) [in-lb/in ²]	GIC (5%/max) [in-lb/in ²]	Conditioning	Slope of the Paris Region	Conditioning
HRH-10	Hexagonal	0.5	4-ply [0/45]s	1/8	2.0						
					3.0	0.622	1.538	2.086	-	-	-
					3.0*	1.149	3.437	3.644		44.053	
					6.0						
				3/16	2.0	0.605	1.945	2.020	-	-	-
					2.0*	1.067	-	3.317		28.080	
					3.0	0.604	2.153	2.325	-	-	-
					3.0*	1.362	3.058	3.740		46.679	
					6.0	0.596	2.012	2.349	-	-	-
					6.0*	1.020	3.246	2.993		68.198	
				3/8	2.0						
					3.0	0.788	3.149	3.030	-	-	-
					3.0*	0.868	2.028	2.533		47.395	
					6.0						
			16-ply [0/45]45	1/8	2.0						
				3/16	3.0	1.912	4.603	5.475		67.148	
					6.0						
					2.0	2.128	4.437	4.931		19.560	
					3.0	2.305	4.961	4.842		98.307	
					6.0	1.722	5.121	5.645		98.503	
				3/8	2.0						
					3.0	1.567	2.813	2.877		159.140	
					6.0						
1	OX-Core	0.5	4-ply	3/16	2.0						
					3.0	0.583	1.712	2.195	-	-	-
					3.0*	1.088	-	3.131		23.102	
					6.0						
			16-ply	3/16	2.0						
					3.0	1.541	5.483	6.017		18.959	
					6.0						

* Indicates shortened specimens

SCB Mode I RTD Summary

SCB Mode I (RTD) Fatigue Summary

Failure Mode(s)

Skydrol Conditioning of SCB Specimens

Skydrol Conditioning Study

Conditioning Timeframes	Temperature [°F]	Skydrol [%]	Water [%]	
		75	25	
	70	50	50	
		25	75	
		75	25	
Continuous	120	50	50	
		25	75	
		75	25	
	160	50	50	
		25	75	
		75	25	
	120	50	50	
		25	75	
Saturate and Then		75	25	
Room Temp	160	50	50	
		25	75	
2 Weeks	160	50	50	

After 5 Weeks

70 °F

120 °F

160 °F

Skydrol Conditioning

Acidity Level Monitoring

 Samples were conditioned continuously at prescribed temperature

Advanced Materials in

Transport Aircraft Structures

Acidity Level Monitoring

×75/25 Skydrol/Water @ 120°F

× 50/50 Skydrol/Water @ 120°F

×25/75 Skydrol/Water @ 120°F

▲75/25 Skydrol/Water @ RT

▲ 50/50 Skydrol/Water @ RT

▲25/75 Skydrol/Water @ RT

80

100

 Samples were conditioned at prescribed temperature and kept at room temperature after reaching targeted acidity level

8

7 1

6

<u> 동</u> 5

4

3

2

0

×

ж

20

40

Advanced Materials in

Transport Aircraft Structures

Days

60

Skydrol Conditioning Procedure

- Mix the needed amount of 50% Skydrol and 50% water solution in the air tight container.
- Place the container inside the conditioning camber at 160 °F for 14 days, mixing thoroughly once a day.
- Remove the container from the conditioning camber and let set at room temperature until cooled.
- The solution should now be at 3-4 pH and will remain so for at least 90 days, if stored at room temperature.

Summary

- Fickian Diffusion is effected by temperature, moisture concentration, and pressure
 - Environmental history on ground condition is important in tracking moisture content through the thickness of composite parts
- Guidelines for design and certification of composite structures related to environmental knockdown based on practical levels of moisture content and operational usage is in progress
- SCB Testing
 - Fluid ingression phenomenon and the progressive damage growth due to entrapped fluids in sandwich structures

Looking Forward

Benefit to Aviation

- Systematic approach for developing environmental knockdown factors based on structural details
- Possibility of extending the methodology for life extension strategies
- Guidelines for substantiating sandwich structures
 - Fluid ingression phenomenon
 - GAG effects on damage growth
 - Effects of geometry and sandwich parameters on fracture toughness and damage growth rates

Future needs

- Test articles representing modern day composite structures
- Environmental history data

End of Presentation.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE