

Environmental Factor Influence on Composite Design and Certification

2016 Technical Review Waruna Seneviratne & John Tomblin Wichita State University/NIAR

Environmental Factor Influence on Composite Design and Certification

- Principal Investigators & Researchers
 - John Tomblin, PhD, and Waruna Seneviratne, PhD
 - Upul Palliyaguru, Caleb Saathoff, and Tharindu Jayaratne
- FAA Technical Monitor
 - Lynn Pham
- Other FAA Personnel Involved
 - Larry Ilcewicz, PhD and Curtis Davies
- Industry Participation

Environmental Factor Influence on Composite Design and Certification

Motivation and Key Issues

Moisture absorption characteristics of composites can be coupled with realistic environmental data to design structurally efficient and economic composite components.

Objective

Provide guidelines for the development of environmental enhancement and to establish practical levels of moisture content and corresponding environmental compensation factors for composite structures.

Approach

- The influence of sandwich parameters such as core size, density, and facesheet/ core stiffness ratio on the onset and damage growth rate of sandwich composite
- Understand the Ground-air-ground effect on onset and damage growth Damage growth in sandwich structures
 - Core types, core densities (24, 32 and 48kg/m³) & F/C thicknesses
- Viscoelastic effects on thermal residual stresses

Overview of Presentation

- Guidance for developing and application of **environmental compensation factor** (ECF)
- The influence of sandwich parameters such as core size, density, and facesheet/core stiffness ratio on the onset and damage growth rate of fluid-ingressed sandwich composite
- Understand the **ground-air-ground effects** on onset and damage growth Damage growth in sandwich structures
- Viscoelastic behavior of thermal residual stresses (TRS) due to hygrothermal history

Environmental Compensation Factor (ECF)

- To satisfy FAA certification requirements for composite structures, FARs require compliance with 23.573, 23.603, 23.613 and 23.619 (can apply also to Part 25 aircraft). General guidelines for a composite structure should be considered which are over what is normally done for metallic certifications (i.e., account for the *difference* between composite and metallic structures in certification)
- An approach which may be used, when combined with analytical modeling, is to apply these "overloads" within the model to demonstrate compliance after a successful static structural test (may also be applied during the test) and demonstrating positive margins of safety throughout the structure

ECF - Design & Certification

Typically, ECF is not applied to the full-scale fatigue test spectrum; it is applied to static/ residual strength tests as an overload. ECF is substantiated through lower-level buildingblocks of testing, i.e., ETW component/element testing.

Moisture Absorption for Full Scale Articles

What is realistic?

Effects of thickness on the moisture equilibrium can be used to generate customized (lower) ECFs for thick structure.

Diffusivity Constant

Diffusion Constant for Carbon/Epoxy [+45/0/-45/90]4s 32-Ply Laminates as a function of Temperature

Environmental Effects

Plasticization → reorientation of fibers
→ higher hot wet properties in tensile loading

Research Overview on Sandwich Disbond Growth [2009 - 2016]

- Test/conditioning procedures (2009 2010)
- Static (2010 2012)
- Fatigue (2011 2013)
- Supplemental damage growth studies (2013 2014)
- Ground-air-ground (GAG) simulations
 - Edgewise compression (2014 2016)
 - Static
 - Fatigue

Further studies (2016 -)

- GAG testing with large flex test —
- Sandwich damage growth simulations

Accomplishments year to date...

Mode I (G1c) Fracture Toughness of Composite Sandwich Structures for Use in Damage Tolerance Design and Analysis

- Volume 1: Static Testing Including Effects of Fluid Ingression
- Volume 2: Fatigue Testing Including Effects of Fluid Ingression
- Volume 3: Supplemental Static Testing

Skydrol Conditioning Procedure

- Mix the needed amount of 50% Skydrol and 50% water solution in the air tight container.
- Place the container inside the conditioning camber at 160 °F for 14 days, mixing thoroughly once a day.
- Remove the container from the conditioning camber and let set at room temperature until cooled.
- The solution should now be at 3-4 pH and will remain so for at least 90 days, if stored at room temperature.

Ground-Air-Ground Cyclic Testing

Edgewise Compression Test Setup

DIC speckle pattern on Damage Side

Ability to accommodate various specimen sizes •Test Specimen 18x20-inch

Bonded Pressure Port 🚰

GAG Test Summary

SPECIMEN NAME	Pr. [psi]	MAX FATIGUE LOAD [lb]	MAX FATIGUE STRESS [ksi]	n
3P-0.125-4IN-RTA-LP-1	13.1	10834	9.993	73
3P-0.125-4IN-RTA-LP-2	13.1	11101	10.615	58
3P-0.125-4IN-RTA-LP-3	13.1	11320	9.943	65
3P-0.125-4IN-CTW-LP-1	13.1	10545	8.960	1151
3P-0.125-4IN-CTD-LP-1	13.1	11329	10.254	1121
3P-0.125-4IN-RTA-L-1	0.0	10834	10.947	11956
3P-0.125-4IN-CTW-L-1	0.0	11413	10.889	24000
3P-0.125-4IN-CTD-L-1	0.0	13498	12.092	26389
3P-0.125-4IN-RTA-P-1	13.1	N/A	N/A	41500
3P-0.125-4IN-CTW-P-1	13.1	N/A	N/A	-
4P-0.125-4IN-RTA-LP-1	13.1	14194	11.448	222
4P-0.125-4IN-RTA-LP-2	13.1	13960	9.723	330
4P-0.125-4IN-CTD-LP-1	13.1	13840	9.717	1872
4P-0.125-4IN-RTA-L-1	0.0	13701	11.034	11356
4P-0.125-4IN-RTA-P-1	13.1	N/A	N/A	-

Curved Panel Testing – FY2016

Curved Edgewise Compression Review

- 4. Panel Curvature
 - Representative cabin
- 5. Panel Fabrication
 - Tool currently available
 - 110 inch radius
- 6. Pressure System
 - Small modification to pressure port

KART Ground-Air-Ground Test Matrix FY2016								
Test Article	Looding	Three Ply						
	Conditions	Static		Fatigue				
	Conditione	RTA	CTW	RTA	CTW			
Curved Edgewise - Compression -	Internal Pressure Only			1				
	Axial Load Only	2	2	2	2			
	Internal Pressure + Axial Load	3	3	3	3			
Total Specimens Required		21						

Development of Predictive Capabilities

Step: Step-1 Frame: Total Time: 0.000000

Three dimensional non-planar crack

Viscoelastic Behavior of TRS due to Hygrothermal History

Research based on:

Rothschilds, R. J., Ilcewicz, L. B., Nordin, P., and Applegate, S. H., "The Effect of Hygrothermal Histories on Matrix Cracking in Fiber Reinforced Laminates," *Journal of Engineering Materials and Technology*, Vol. 110, pp. 158-168, 1988.

Elastic Behavior of TRS

Viscoelastic Behavior of TRS due to Hygrothermal History

Safety Concern!

Residual Strength Evaluation

Hygrothermal Effects on Composite Splice Joints

- Thin Specimen Hygrothermal Cycling
 - Use curvature of thin unsymmetric laminate as a measure of residual stresses
 - Cycle thin laminate specimens through a Crossman Loop
 - Observe viscoelastic response and residual stress relaxation
 - Investigate ratchetting phenomenon
- Specimen Configuration
 - [0₂/90₂] Unsymmetric Layup
 - Cytec T650/5320-1 UNI
 - 290 °F Cure
 - 0.022" panel thickness
 - 1.5" x 10" specimens

Temp [°F]

Ratcheting Effects – 4-Ply Specimens

Spliced Tensile Specimens

- Panels manufactured with the above splice configuration
 - T650/5320-1 Unidirectional material
 - T650/5320-1 Plain-Weave material
- Quasi layup [45/0/-45/90]_S
- 0.5" Overlap, 0.05" Splice Gap
- 1.5"x12" tensile specimens

8-Ply Spliced Tensile Specimens

Summary

- Guidelines for design and certification of composite structures related to environmental knockdown based on practical levels of moisture content and operational usage is in progress
 - Full-scale static strength demonstration
 - Durability and damage tolerance test substantiation
- SCB Testing
 - Fluid ingression phenomenon and the progressive damage growth due to entrapped fluids in sandwich structures
- GAG
 - Pressure and load combined loading significantly reduced the static strength and fatigue life of the sandwich structure
- Viscoelastic behavior of TRS
 - Ratcheting phenmenon is noted from cycle 1
 - Effects of hygrothermal cycling on mechanical properties of splice joints are under investigation

Looking Forward

Benefit to Aviation

- Systematic approach for developing environmental knockdown factors based on structural details
- Possibility of extending the methodology for life extension strategies
- Guidelines for substantiating sandwich structures
 - Fluid ingression phenomenon
 - GAG effects on damage growth
 - Effects of geometry and sandwich parameters on fracture toughness and damage growth rates

Future needs

- Test articles representing modern day composite structures
- Environmental history data

End of Presentation.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE