
Environmental Factor Influence on 
Composite Design and 
Certification 
 
2016 Technical Review 
Waruna Seneviratne & John Tomblin 
Wichita State University/NIAR 
 



2 

Environmental Factor Influence on Composite 
Design and Certification 

•  Principal Investigators & Researchers 
–  John Tomblin, PhD, and Waruna Seneviratne, PhD 
–  Upul Palliyaguru, Caleb Saathoff, and Tharindu Jayaratne 

•  FAA Technical Monitor 
–  Lynn Pham 

•  Other FAA Personnel Involved 
–  Larry Ilcewicz, PhD and Curtis Davies  

•  Industry Participation 
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Environmental Factor Influence on Composite 
Design and Certification 
•  Motivation and Key Issues  

Moisture absorption characteristics of composites can be coupled with 
realistic environmental data to design structurally efficient and economic 
composite components.  

•  Objective 
Provide guidelines for the development of environmental enhancement 
and to establish practical levels of moisture content and corresponding 
environmental compensation factors for composite structures.  

•  Approach 
–  The influence of sandwich parameters such as core size, density, and facesheet/

core stiffness ratio on the onset and damage growth rate of sandwich composite 
–  Understand the Ground-air-ground effect on onset and damage growth Damage 

growth in sandwich structures 
§  Core types, core densities (24, 32 and 48kg/m³) & F/C thicknesses 

–   Viscoelastic effects on thermal residual stresses 



Approach 

Stress Analysis 

Failure Analysis 

Service Findings 

Analytical Tools 
Experimental 

Data 

Validation 

Guidelines 



Overview of Presentation 

•  Guidance for developing and application of environmental 
compensation factor (ECF) 

•  The influence of sandwich parameters such as core size, density, 
and facesheet/core stiffness ratio on the onset and damage growth 
rate of fluid-ingressed sandwich composite 

•  Understand the ground-air-ground effects on onset and damage 
growth Damage growth in sandwich structures 

•  Viscoelastic behavior of thermal residual stresses (TRS) due to 
hygrothermal history 
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Environmental Compensation Factor (ECF) 

•  To satisfy FAA certification requirements for composite structures, FARs require 
compliance with 23.573, 23.603, 23.613 and 23.619 (can apply also to Part 25 
aircraft).  General guidelines for a composite structure should be considered which 
are over what is normally done for metallic certifications (i.e., account for the 
difference between composite and metallic structures in certification) 

•  An approach which may be used, when combined with analytical modeling, is to 
apply these “overloads” within the model to demonstrate compliance after a 
successful static structural test (may also be applied during the test) and 
demonstrating positive margins of safety throughout the structure  
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ECF - Design & Certification 
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Ambient external flight-load strain 
unaffected by addition of thermal 

moisture strains 
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Typically, ECF is not applied to the full-scale fatigue test spectrum; it is applied to static/
residual strength tests as an overload. ECF is substantiated through lower-level building-
blocks of testing, i.e., ETW component/element testing. 
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Moisture Absorption for Full Scale Articles 

What is realistic? 
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Effects of thickness on the moisture equilibrium can be used 
to generate customized (lower) ECFs for thick structure.  



Diffusivity Constant 
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Environmental Effects 

Plasticization è reorientation of fibers  
è higher hot wet properties in tensile loading 



Research Overview on Sandwich Disbond Growth 
[2009 – 2016] 

•  Single-cantilever beam (SCB) testing 
–  Test/conditioning procedures (2009 – 2010) 

–  Static (2010 – 2012) 

–  Fatigue (2011 – 2013) 

–  Supplemental damage growth studies (2013 – 2014) 

•  Ground-air-ground (GAG) simulations 
–  Edgewise compression (2014 – 2016) 

§  Static  
§  Fatigue 

•  Further studies (2016 – ……..) 
–  GAG testing with large flex test 
–  Sandwich damage growth simulations 



Accomplishments year to date… 

Mode I (G1c) Fracture Toughness of Composite Sandwich Structures for 
Use in Damage Tolerance Design and Analysis 
–  Volume 1: Static Testing Including Effects of Fluid Ingression 
–  Volume 2: Fatigue Testing Including Effects of Fluid Ingression 
–  Volume 3: Supplemental Static Testing   



Skydrol Conditioning Procedure 

•  Mix the needed amount of 50% Skydrol and 50% water solution in the air tight 
container. 

•  Place the container inside the conditioning camber at 160 °F for 14 days, mixing 
thoroughly once a day. 

•  Remove the container from the conditioning camber and let set at room temperature 
until cooled. 

•  The solution should now be at 3-4 pH and will remain so for at least 90 days, if stored 
at room temperature. 
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Ground-Air-Ground Cyclic Testing 
•  Edgewise Compression 
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Edgewise Compression 
Test Setup 

DIC speckle pattern on 
Damage Side 

Ability to accommodate various specimen sizes 
• Test Specimen 18x20-inch 

Bonded Pressure Port 



GAG Test Summary 

SPECIMEN NAME 
Pr. MAX 

FATIGUE 
MAX 

FATIGUE 
n 

[psi] LOAD [lb] STRESS 
[ksi] 

3P-0.125-4IN-RTA-LP-1 13.1 10834 9.993 73 
3P-0.125-4IN-RTA-LP-2 13.1 11101 10.615 58 
3P-0.125-4IN-RTA-LP-3 13.1 11320 9.943 65 
3P-0.125-4IN-CTW-LP-1 13.1 10545 8.960 1151 
3P-0.125-4IN-CTD-LP-1 13.1 11329 10.254 1121 
3P-0.125-4IN-RTA-L-1 0.0 10834 10.947 11956 
3P-0.125-4IN-CTW-L-1 0.0 11413 10.889 24000 
3P-0.125-4IN-CTD-L-1 0.0 13498 12.092 26389 
3P-0.125-4IN-RTA-P-1 13.1 N/A N/A 41500 
3P-0.125-4IN-CTW-P-1 13.1 N/A N/A - 
4P-0.125-4IN-RTA-LP-1 13.1 14194 11.448 222 
4P-0.125-4IN-RTA-LP-2 13.1 13960 9.723 330 
4P-0.125-4IN-CTD-LP-1 13.1 13840 9.717 1872 
4P-0.125-4IN-RTA-L-1 0.0 13701 11.034 11356 
4P-0.125-4IN-RTA-P-1 13.1 N/A N/A - 



Curved Panel Testing – FY2016 

•  Curved Edgewise Compression Review 
4.  Panel Curvature 

•  Representative cabin 
5.  Panel Fabrication 

•  Tool currently available 
•  110 inch radius 

6.  Pressure System 
•  Small modification to pressure      port 

RTA CTW RTA CTW
Internal Pressure Only 1

Axial Load Only 2 2 2 2
Internal Pressure + Axial Load 3 3 3 3

Total Specimens Required

KART Ground-Air-Ground Test Matrix FY2016

Curved Edgewise
Compression

Test Article Loading
Conditions Static Fatigue

Three	Ply
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Development of Predictive Capabilities 

Anticlastic bending and irregular/wavy 
crack front  

Three dimensional non-planar crack 
growth 



Viscoelastic Behavior of TRS due to Hygrothermal History 

Research based on: 
 Rothschilds, R. J., Ilcewicz, L. B., Nordin, P., and Applegate, S. H., “The Effect of Hygrothermal Histories on Matrix Cracking in 
Fiber Reinforced Laminates,” Journal of Engineering Materials and Technology, Vol. 110, pp. 158-168, 1988. 

12.6.1.3  Environment and Thermal Cycling  

T0,dry T0 T0,wet 
Temperature 
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Stress 

Stress 
relaxation 

Moisture 
desorption 

Decrease in 
temperature 

Moisture 
induced 
swelling 

9/16/2015 

Understanding Thermal Residual Stresses 
- Crossman Loop - 



Elastic Behavior of TRS 
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Viscoelastic Behavior of TRS due to 
Hygrothermal History 
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Safety Concern! 
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Residual Strength Evaluation 

•  Residual strength tests will be conducted at 
several combinations of temperature and 
moisture 

•  Curvature of thin laminate along with micro-
mechanical analysis can be use as traveler 
to determine TRS 
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Hygrothermal Effects on  
Composite Splice Joints 

•  Thin Specimen Hygrothermal Cycling 
–  Use curvature of thin unsymmetric 

laminate as a measure of residual 
stresses 

–  Cycle thin laminate specimens through a 
Crossman Loop  

–  Observe viscoelastic response and 
residual stress relaxation 

–  Investigate ratchetting phenomenon 

•  Specimen Configuration 
–  [02/902] Unsymmetric Layup 
–  Cytec T650/5320-1 UNI 
–  290 °F Cure 
–  0.022” panel thickness 
–  1.5” x 10” specimens 



Ratcheting Effects – 4-Ply Specimens 



Spliced Tensile Specimens 

•  Panels manufactured with the above splice configuration 
•  T650/5320-1 Unidirectional material 
•  T650/5320-1 Plain-Weave material 

•  Quasi layup [45/0/-45/90]S 

•  0.5” Overlap, 0.05” Splice Gap 
•  1.5”x12” tensile specimens 

C-scan image of PW Panel 



8-Ply Spliced Tensile Specimens 

3/2/2016 

T650/5320-1 UNI [45/0/-45/90]s  

T650/5320-1 PW [45/0/-45/90]s  



Summary 
•  Guidelines for design and certification of composite structures 

related to environmental knockdown based on practical levels of 
moisture content and operational usage is in progress 

–  Full-scale static strength demonstration 
–  Durability and damage tolerance test substantiation 

•  SCB Testing  
–  Fluid ingression phenomenon and the progressive damage growth due 

to entrapped fluids in sandwich structures 
•  GAG  

–  Pressure and load combined loading significantly reduced the static 
strength and fatigue life of the sandwich structure 

•  Viscoelastic behavior of TRS 
–  Ratcheting phenmenon is noted from cycle 1 
–  Effects of hygrothermal cycling on mechanical properties of splice joints 

are under investigation 
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Looking Forward 

•  Benefit to Aviation 
–  Systematic approach for developing environmental knockdown 

factors based on structural details 
–  Possibility of extending the methodology for life extension 

strategies 
–  Guidelines for substantiating sandwich structures 

§  Fluid ingression phenomenon 
§  GAG effects on damage growth 
§  Effects of geometry and sandwich parameters on fracture 

toughness and damage growth rates 

•  Future needs 
–  Test articles representing modern day composite structures 
–  Environmental history data 



End of Presentation. 
 

Thank you. 
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