

Composite Thermal Damage Measurement With Handheld FTIR

Tucker Howie Materials Science and Engineering University of Washington

JAMS 2014 Technical Review March 25-26, 2014

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Brian Flinn (PI)
 - Tucker Howie (Post-doc, UW-MSE)
 - Ashley Tracey (Ph.D. candidate, UW-MSE)
 - Edward Roberts (undergraduate, UW-MSE)
- FAA Technical Monitor
 - David Galella and David Westland (year 3+)
 - Paul Swindell (year 1 & 2)
- Industry Participation
 - The Boeing Company (Paul Shelley, Paul Vahey)
 - Sandia National Lab (Dennis Roach)
 - Agilent (formerly A2 Technologies)

Composite Thermal Damage Measurement with Handheld FTIR

- Motivation and Key Issues
 - Damage detection in composites requires different techniques than metals
 - Incipient thermal damage (ITD) occurs below traditional nondestructive evaluation (NDE) detection limits
- Objective
 - Determine if handheld Fourier transform infrared (FTIR) spectroscopy can detect ITD and guide repair
- Approach
 - Characterize panels with controlled thermal damage using FTIR and perform repair based on FTIR inspection

Detection Methods for Thermal Damage

Short Beam Shear Strength Retention vs. Temp./Time – Epoxy 1

- Properties like short beam strength (SBS) degrade before detection possible with ultrasound or visual inspection
 - Damage termed ITD
- Need a method to detect ITD
 - FTIR?

Detection Methods for Thermal Damage

Short Beam Shear Strength Retention vs. Temp./Time – Epoxy 1

- Properties degrade before detection possible with ultrasound or visual inspection
 - Damage termed (ITD)
- Need a method to detect ITD
 - FTIR?

Experimental Overview

Materials and Process – FTIR

- Detects chemical changes in the matrix due to thermal degradation
- Mid-IR data region: 4000 cm⁻¹ to 650 cm⁻¹
- Diffuse reflectance sampling interface
- Data collection: 90 coadded scans with 16 cm⁻¹ resolution for background and specimen

ExoScan FTIR

An infrared beam path for diffuse reflectance

Materials and Process

- Toray T800/3900 composites with various levels of thermal damage
 - SBS samples thermally exposed in convection oven
 - Locally damaged panels using heat blanket and insulation
- Sand SBS surfaces with 180 grit Al₂O₃ sanding pads
- Measure sanded surface with diffuse reflectance FTIR
 - 3 samples per time/temp exposure
 9 measurements per exposure level
 - 3 measurements per sample
- Use multivariate analysis to develop calibration model to relate FTIR spectra to SBS values
 - GRAMS IQ software

Spectral Analysis

- FTIR spectra of CFRP surfaces complex
 Multiple constituents → many spectral peaks
- How to analyze spectra with confidence?
 - Multivariate analysis!
- Principal Component Analysis (PCA)
 - Exploratory to identify trends
 - Useful for determining differences and similarities between measurements
 - Used to develop partial least squares (PLS) models

Developing Model from FTIR Spectra

- FTIR spectra processed to remove baseline effects
 - Savitzky-Golay 1st derivative with mean centering and 7pt smoothing
- PLS model relating SBS to FTIR developed using PCA analysis on processed spectra

Calibration Model and Model Validation

- A PLS model relating the SBS measurements to FTIR spectra was successfully generated for sanded surface
- Model was validated by predicting independent evaluation set
 - Model showed good predictive capabilities of evaluation set (~85% of samples had < 5% error)

 $\% Error = \frac{predicted - actual}{actual} *100\%$

Locally Heated Panel Setup

- 12" x 12" panels (24-ply) subjected to localized hotspot
- Local hotspot generated by stacking insulation layers on top of heat blanket in center of panel
- Three peak temperatures (440 °F, 465 °F, 490 °F) exposed for 1 hr

Panel Mapping Procedures

- Grid with 0.5" between points marked on edges of panel
- FTIR positioned using rulers to align with grid
- Measurements taken at every point on grid

Measurement location

13

Panel Mapping Results

- SBS retention predicted for each point using calibration model
- Each square represents SBS retention prediction from FTIR measurement taken at a grid point on the panel

Predicted SBS Retention(%)

Comparison of Panel Mapping 1 hr @ 440 °F 1 hr @ 465 °F 1 hr @ 490 °F Sanded Surface **Resin Rich** \bigtriangledown Surface (1st year)

Note: Scaling, panel orientation, and color scheme are different

Mechanical Testing

- 12" x 12" quasi-isotropic panels (24-ply) locally heated using a heat lamp
 - Max exposure ~ 450 °F for 1 hr
- Panel cut up into alternating strips for SBS and dynamic mechanical analysis (DMA) samples
 - Panel too thick for DMA samples → specimens cut from surface exposed to heat

SBS Measurements

- SBS measurements did not exhibit strong sensitivity to localized thermal exposure
 - Surface damage vs. max shear in center of the part
- Predictions of SBS from FTIR spectra were reasonable
 - ~95 % of predictions had < 10 % error</p>

DMA Measurements

- Tg measurements sensitive to localized thermal exposure
 - Maximum increase of ~ 17-18 °F in thermally exposed region

Summary

- PLS model to relate FTIR spectra to SBS was successfully developed and validated
- Surface mapping of panels with localized heat damage completed
- Preliminary mechanical testing performed

Future Work

- Perform scarfed repair guided by FTIR
- Test scarfed repair
- Mechanical testing on samples from locally heated panel from 1st and 2nd year of project

Looking Forward

- Benefit to Aviation
 - Improved thermal damage detection
 - Greater confidence in repairs
- Future needs
 - Application to other composite systems
 - Other applications of handheld FTIR
 - Chemical damage
 - Surface prep for bonding

Acknowledgements

- FAA, JAMS, AMTAS JMS
- Boeing Company

Sandia

National

- Paul Vahey, Paul Shelley, Megan Watson, John Spalding
- Sandia National Labs
- Agilent Technologies
- UWMSE W MATERIALS SCIENCE & ENGINEERING
 UNIVERSITY of WASHINGTON
- Flinn Group:
 - Jonathon Morasch, David Pate

Questions and comments are strongly encouraged

Thank you

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE