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Impact Damage Formation on Composite Aircraft Structures 
•  Motivation and Key Issues  

•  impacts are major source of aircraft damage 
•  high energy blunt impact damage (BID) of main interest 

•  involves large contact area 
•  damage created can exist with little/no exterior visibility 

•  Sources of Interest: those acting over wide area and/or across 
multiple structural elements 
•  ground service equipment (GSE) with rubber bumpers 
•  railings, blunt/round corners, FOD of unknown geometry 
•  hail ice, bird 

 

Sandwich Blunt Impact 
•  core crush with low/non-

visible dent 
•  low velocity: GSE, tools 
•  high velocity: ice, bird 

Ground Vehicles &  
Service Equipment  
•  side & lower facing 

surfaces 
•  high mass, low 

velocity 

Ice Impact on Sandwich 
Panel 
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Overall Program Objectives 

General Objectives Applicable to Blunt Impact Sources of Interest: 
 

•  Understand blunt impact damage formation and visual detectability 
•  understand relationship between damage formation vs. bluntness/contact-

area size 
•  determine key phenomena and parameters controlling both internal and 

external/visual damage formation 
•  identify and predict failure thresholds (useful for design) 
 

•  Develop analysis and testing methodologies, including: 
•  physically-based modeling capabilities validated by element-level tests 

•  selection of tests to excite key failure modes 
•  further model validation via full-scale tests 

•  establish how to predict damage visibility – surface crack, residual dent 



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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E	

Co-Cured	
Composite	
Skin	&	

Stringers	

Composite	Frames
(C-Shape)

Shear	Ties:
- Composite
- 7075	Al	Alloy

Blunt	Impact	
Loading	Zone	– on	
Skin	Directly	Onto	

Shear	Ties Replaced	
Central	9

•  series	of	large	specimens	tested	(ID:		
Frame03,	Frame04-1,		Frame04-2)	

–  internal	damage	to	frames	and	shear	?es	
–  no	skin	cracking	or	external	visibility	
–  strength	of	shear	?es	strongly	affects	failure	

modes	in	frames	

•  element-level	tests	suppor?ng	modeling	
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GSE High Energy Blunt Impact 
Previous Results Summary I 

Frame	
Failure	

Near	Outer	
Shear	Ties	

Specim.:	Frame04-1	
7075	Shear	Ties	 

Damage	Not	
Visible	from	
Exterior	

Element-
Level 
Tests 

Large Panel Tests 
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1st Shear Ties 
Delam. 

1st Shear Ties 
Fracture 

Frames Rotation 
Leading to 2nd 

Shear Ties 
Fracture 

Large Panel Simulation 

Shear Tie Modeling Details: 
•  continuum solid elements; 12 

layers through the thickness 
•  cohesive surface interaction 

applied between elements 
•  3D Hill failure criteria  

Issue: Frame Failure 
Immediately When 

2nd Shear Ties 
Fracture Occurs 

GSE High Energy Impact 
Previous Results Summary II 

Improvement 
needed: frame 
failure models, 
element-level 
C-frame tests 

Missing Uploading to Actual 
Final Frame Failure 



Element-Level C-Frame Tests 
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•  C-frame test specimen 
§  short section w/ extension arm 

•  fixed end boundary condition 
•  loaded end: 

§  2 point connection à bending 
§  1 point à bending + torsion 

Gage Section: 160 mm End Tabs End Tabs 

Pot 2 Pot 1 

Specimen 
Closeup 

View 

Load Cells 

C-Frame 
Element 

Specimen 

AL Extension 
Arm 

Pot 2 

AL Extension 
Arm 

Load Cells 

Specimen 
Closeup 

View 

2 Point Load 
1 Point Load 

Bending Bending-Torsion 



C-Frame Bending Test 
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500N 

3800N 

6600N 

A2 

Load  
Direction 

Post buckled 
Flange 

Straightened 
Flange 



Combined Bending-Torsion Test 
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Specimens A4 and D1 
•  More Torsion in D1  
•  Adjustment via Load 

Point Offset w.r.t.  
Shear Center 



Finite Element Model: C-Frame Element Test 
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Frame section 
information 
(Unit: mm) 

•  Materials :  
•  Cytec X840/Z60 6k woven carbon/epoxy with 

Hashin-Rotem failure 
•  in-plane failures only, no delam represented 

•  Aluminum 6061-T6 (box beam) 
•  Element type  

•  C-frame: Continuum Shell (SC8R) 
•  Aluminum: Solid (C3D8R) 

•  Tie interaction applied at interfaces 
à Incorporate validated models into large-sized five-

frame panel simulations 
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7 Strain 
Gauges

Back-to-Back

Outside of Flange Only

1 Rosette

Near Fixed-End Mid-Span 
Buckling 

Straightening 

Fixed	
suppotArm

Joint

Model: initial 
matrix  
tension 
failure @ 
4120 N 

Buckling 

Straightening 

Modeling 
in 

Progress 
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Straightening 

Modeling 
in 

Progress 

Near Fixed-End Mid-Span Near Arm Jt. 

Fixed	
suppotArm

Joint

Buckling 

Straightening 

Model: initial matrix  tension 
failure @ 4130 N 



Region 1

Region 2

Region 2

Region 3

Region 3
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New Focus: Frame-to-Floor Structure Interaction 

•  GSE impact location relative to floor joint 
affects failure modes 
• Region 1: bending dominated 
• Region 2: more stiff – high beam shear 
• Region 3: most stiff – frame & joint crush 

•  must accurately represent frame-to-floor joint 
interaction 

•  compliance of frame-to-floor connection 
•  continuous shear ties 

 

Specimen Design & Build: 
Impact at Regions 2 and 3 



Benchmark Existing Configurations 
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Continuous 
Shear Ties 

Bolt 
Pattern 

Stringer 
Spacing 

Frame-to-
Floor Joint 

Considerations: 

Floor 
Beams 

Bracket to 
Frames/Shear 
Tie 

Floor Beams 

Splice 
Joint 

Previous Specimen: 
•  discrete shear ties 
•  no floor beams 

Incorporate Features Into New 
Specimen Design 
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203 mm 

1.56 m 

Floor Beams 

New Specimen: 
Quarter Barrel With Floor Beams 

Skin + 
Stringers 

Frames with 
Continuous 
Shear Ties 



New Specimen Stringer Geometry 
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Previous Specimen Stringer 
Dimensions (Units: mm) 
Spacing 305 mm 

New Specimen Stringer Dimensions (Units: mm) 

203 mm 

Layup & 
Thk TBD 



Floor Joint Connection 
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•  Simplified model geometry aims to 
provide correct stiffness 

Aluminum I-Beam 
Standard Section 



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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Sandwich	Impact	Ac1vity	Overview	

•  Investigate internal damage morphology of Nomex© honeycomb 
panels subject to blunt impacts & transverse loading: 

– Out-of-plane flatwise compression tests 
– Metal tip pendulum impact tests at 2-4 m/s 

Ø  rounded metal tips vs flat impactor face 
Ø  support conditions 
Ø  facesheet thickness effect on core crush  and dent 

•  Model complex mechanical behavior of Nomex© representative 
volume elements using exact honeycomb cell geometry 
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Previous	Work	Summary	
•  Local indentation model for sandwich beams 

 
–  s 
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Identation 
Model  

Elasto-Plastic Foundation 

Indentation Model Assumptions 
•  Skin remains undamaged 
•  No shear interaction between 

cells 
•  Out-of-plane core response 

idealized as elasto-perfectly 
plastic spring: 
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Normalized crosshead displacement 

(Minakuchi et al. 2008) 

(Minakuchi 
et al. 2008) 
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ID#1  (Max.norm. disp. = 20.4%)
ID#2  (Max.norm. disp. = 11.1%)
Analytical model for ID#1 case
Analytical model for ID#2 case

residual dent for ID#2 
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Model Correlation 
•  Crushing/ indentation 

accurately predicted 
•  Residual dent not predicted 

•  simplistic unloading in 
core constitutive 
idealization  



Flatwise	Quasi-Sta1c	Core	Crushing	Tests	
•  Uniform flatwise compression tests on 

35 x 35 mm core coupons with 0.5 
mm/min applied displacement rate 
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MTSCCB23, 1 full cycle
MTSCCB24, 2 full cycles0.57% residual strain 

for MTSCCB23 test 

MTSCCB23: Crushing damage state in  
W-direction after test (resin fillet fracture) 

MTSCCB24: Onset of resin fracture; no 
residual strain 



Wall	Buckling	&	Core	Snapping	
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MTSCCB23, 1 full cycle
MTSCCB24, 2 full cycles0.57% residual strain 

for MTSCCB23 test 

One Frame 
Difference; 
Same Load 

Local Resin Fracture 
& Wall Separation 

Video: Test MTSCCB23 

•  Significant postbuckling of core walls prior to 
peak load; short wavelength low stiffness loss 

•  Approaching peak: resin fracture from kink à 
local wall separation causes mode change with 
audible snap; long wavelength with more stiffness 
loss 



Low	Velocity	Impact	Core	Crushing	Tests	
•  Strain rate effects: quasi-static vs. low-velocity flatwise impact tests   

 

•  Effect of impactor radius: flat tip vs. 152.4 mm radius tip 
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Pendulum impact test: PICCB05
Pendulum impact test: PICCB06
Quasi-static test: MTSCCB03
Quasi-static test: MTSCCB04

Test ID Applied displacement rate Peak stress 
(MPa) 

PICCB05 Initial velocity 1.86 m/s 4.14 
PICCB06 Initial velocity 1.85 m/s 4.07 

MTSCCB03 Constant rate 5 mm/min 3.99 
MTSCCB04 Constant rate 10 mm/min 3.90 

Not strongly rate dependent 
•  Peak stress ~5% higher for pendulum tests 
•  Same level constant crush stress 

152.4 mm 
radius tip 
impact 
compression 
test (PICCB14) 

Flatwise 
impact 
compression 
test 
(PICCB06) 

PICCB14 test: 
Highspeed 

camera video 
(15,000 fps) 

Radius-tip impact 
induces core 
crush at near-

impact facesheet. 
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PIPLIB04, Thick facesheet impact
PIPLIB06, Thin facesheet impact

•  R50.8 mm metal tip impact 
•  Input energy = 20 J  
•  Skin thickness: 

Ø  Thick side nominal thickness = 4.85 mm 
Ø  Thin side nominal thickness = 1.68 mm 

•  Flip specimen to investigate effects 
of skin stiffness on core damage  

•  Depth indicator used to measure 
    actual dents along panel surface 

 

 

 

 

 

Effect	of	Facesheet	Thickness:	
Impact	on	Full	Back-Supported	Panels	(145	x	95	mm)	
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Local indentation impact on thick site 
impact -> no residual dent 

(*) (*) 

(*) Rebounding dynamics of skin 
at loss of touch with metal tip, no 
correlation with residual dent  

Local indentation impact on thin site impact -> 
peak residual dent 0.4 mm 

Impact sites 



•  R50.8 mm metal tip impact 
•  Input energy range: 14 – 40 J 
•  40 J impact on thick side facesheet 
      produced slight core fracture – more 

stiff facesheet à more restoring force 
•  All thin skin impacted specimens  
      experienced core damage  
•  Thin skin specimens revealed  
      cell wall snapping, while thick skin  
      tests also exhibit more core wall 

fracture 
       
 

 

 

 

 

Impact	Tests	on	Picture	Frame	Supported	Panels	
	(195	x	195	mm,	165	mm	Square	Opening)	
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Pendulum impact on thick impact site with 40 J 
input energy 

Pendulum impact on thin impact site with 20 J 
input energy; peak residual dent 0.33 mm 
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Test results on panels supported by square window fixture
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PIPIB05, Thick skin impact, Input Energy =40 J
PIPIB02, Thin skin impact, Input Energy =20 J

Impact sites 



•  Simulate flatwise compression tests 
•  Exact representation of cell 

geometry with and without periodic 
boundary conditions (PBC) 

•  Elasto-plastic aluminum material; will 
change to Nomex©  

       
 

 

 

 

 

Current	Modeling	Ac1vity:	Core	Failure	
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Application of 
periodic boundary 
conditions on RVE 
(Wilbert et al. 2010)  

Series of RVE 
elements made of 
aluminum (No 
PBCs) 
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Flatwise force-displacement curve on aluminum cores

Normalized through core thickness displacement (%)
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RVE element with PBCs
Series of RVE elements w/out PBCs



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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Summary/Conclusions 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  Element-level C-frame bending and bending-torsion tests completed 

–  excited relevant failure modes observed in past large panel blunt impact test 
•  FE models capture key response of element-level tests: flange post buckling, 

initial matrix tension failure, matrix compression and fiber compression failure 
of bottom flange (model development still in progress) 

•  Quarter barrel specimen design – includes floor joints to gain more accurate 
frame torsion response and allow investigation of impact near floor location 

Blunt Impact Damage to Sandwich Panels 
•  Flatwise core compression quasi-static tests reveal that onset of Nomex© 

core damage is attributed to local fracture of phenolic resin rich zones, 
followed by cell wall snapping (local wall separation + mode change) and 
successive wall folding 

•  Radius-tip impacts result in core crushing close to impact-side facesheet 
–  by contrast, flatwise compression (static & dynamic) shows crush/kinking initiating 

anywhere through core depth 

•  Impacts of stiff facesheet produce less visible damage (low/no dent) 
–  cell walls tend to fracture in tension due to higher spring-back forces 

•  Accurate Nomex © core simulation requires very fine RVE computational 
model with fracture capabilities and consideration of geometric irregularities 29 
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Benefits to Aviation 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  Understanding of prospective damage resulting from GSE impact events 

•  awareness of phenomena and possible internal failure modes 
•  provides information on mode and extent of seeded damage, particularly 

non-visible impact damage (NVID) from blunt impact threats 
•  how design parameters (layup, thickness, etc) affect damage formation and 

propagation; influence of stiff regions (floor area) 
•  Accurate FEA modeling capability of blunt impact 

•  predict damage modes, size, and locations 
•  external visibility – residual dent level, surface cracking 

 

Blunt Impact Damage to Sandwich Panels 
•  Insight into properly seeding damage for damage tolerance assessment 

•  Knowledge of internal core damage state as a function of skin bending stiffness 
•  Detailed understanding of instability phenomena during core crushing mechanism and 

fracture during facesheet spring-back 
•  Modeling capability for predicting core impact-crushing and residual dent depth 



Looking Forward 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  Continued development of high fidelity FEA modeling capability – validated at 

element level 
–  incorporate C-frame failure models into previous specimen simulation 

•  Quarter-barrel specimen analysis – assess for improvement of specimen design 
•  Quarter barrel specimen detailed design finalization and manufacturing 
•  Quarter-barrel or half-barrel fuselage tests; effect of near-floor impacts and 

glancing impact (underbody) 
•  Direct C-frame crushing element tests – impacts at floor beam level 
•  Multiple fasteners modeling within impact progressive failure analysis 

Blunt Impact Damage to Sandwich Panels 
•  Enhance experimental database with more tests & observations – emphasis on 

relating core damage extent to face sheet stiffness, dent/visibility 
•  Conduct hail ice impacts and investigate structural performance of panels in 

high strain rate regime 
•  Initiate more accurate representation of core geometry using actual honeycomb 

cell size as well as introduce phenolic resin fillets in the intersection of double 
and single walls (resin columns) 
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Core Exact Geometry & Resin Rich Columns 
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