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Status Update:
Mode I Sandwich Fracture Mechanics Test Method

• Second subcommittee ballot in 
ASTM subcommittee D30.09

• Negative votes discussed at recent 
ASTM D30 meeting and follow-on 
teleconference
– Mode mixity: “Mode I dominant” 
– Acceptable disbond location: 

within top one-fourth of core
• Additional details to be included in 

CMH-17
• Concurrent D30 subcommittee       

& main committee ballot in June

Standardization of Single Cantilever Beam (SCB) Test
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• SCB fatigue test method development
• Further Mixed-Mode & Mode II 

sandwich disbond test method 
development 

• Follow-on U.S. led building block 
exercise
– Core, facesheet, and film adhesives 

obtained
– Follow-on coupon and sub-element 

level testing
– Analysis round-robin

• New content for upcoming revision of 
CMH-17 Handbook

Status Update:
Additional Sandwich Disbond Related Activities



Status Update:
Sandwich Damage Tolerance

• Draft standard of Sandwich composite 
Compression After Impact (SCAI) completed
– Balloted Spring 2018 ASTM D30 meeting
– Updates to address negative votes in work

• Draft practice of 4-Point Flexure After Impact 
(4-FAI) in progress
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Research Objectives:
Notch Sensitivity of Sandwich Composites

• Initial development of notched test methods & associated 
analysis methodologies for composite sandwich panels

• Documentation of notched testing and analysis protocols in 
Composites Materials Handbook (CMH-17)

• Explore development of new ASTM standards for notch 
sensitivity of sandwich composites
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Testing Considerations:
Sandwich Open-Hole Compression

• Test fixture/Specimen support
– End supports

 Clamping top and bottom
 Potting

– Side supports
 Knife edge

• Specimen size
– Separation of central hole and boundary effects
– Production of acceptable strength reductions

• Strain measurement
• Specimen alignment

Open hole compression fixture
for monolithic composites
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• Hole diameter (W/D)
– Legacy: W/D = 6
– Acceptable strength reduction
– Minimal finite width effects

• Aspect ratio (H/W)
– H/W = 2
– Acceptable strength reduction

• Standard configuration
– Width: 4 in.
– Height: 8 in.
– Hole Diameter: 0.67 in.

Sandwich Open-Hole Compression:
Determination of Sizing Guidelines
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Testing Considerations:
Sandwich Open-Hole Flexure Test

• Test fixture/Specimen support
– Inner span

 Separation of notch and loading 
boundary effects

– Outer span
 Develop sufficient bending moment
 Ensure failure in inner span

• Required specimen width
– Separation of central hole and 

specimen edges
– Production of acceptable strength 

reduction
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• Current configuration
– Specimen width W = 3 in.
– Hole diameter D = 0.5 in.
– Inner span L = 4 in.
– Outer span sized to ensure 

inner span failure
• No inner span aspect ratio 

sensitivity (L/W)
– Inner span can be increased 

for measurement purposes

Sandwich Open-Hole Flexure Test:
Determination of Sizing Guidelines
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• Effects of core notch or core 
damaged on material response
– Notched core shear
 Circular centered thru holes
 Beam flexure

– Sandwich disbond after core 
crush
 Quasi-static indentation
 Multiple crush geometries
 SCB Mode I fracture testing

Third Loading Configuration:
Core Damage and Notch Effects
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Disbond after Core Crush

Notched Core Shear by Beam Flexure



• Investigating notch effects in 
Nomex honeycomb core

• Three-point flexure loading
• Sandwich configurations:

– W = 3 in. L = 8 in. C = 0.5 in.
– 3 pcf 1/8 in. cell Nomex
– Notched & Unnotched

• Through hole, 0.5 in. dia (W/D=6)
• Sized to ensure core shear 

failure (ASTM C393)
• L and W core directions tested

Testing Considerations:
Notched Core Shear by Beam Flexure
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• Similar behavior between L 
and W core orientations

• Net section shear failure
• No significant notch effect 

observed

Current Focus:
Notched Core Shear Results
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• Quasi-static indentation
– Minimize facesheet damage
– Produce region of crushed core

• Indenter geometries
– Flat plate (uniform crush)
– Wedge (tapered crush)
– Cylinder (discreet crush region)

• Mode I facesheet disbond testing 
following indentation
– Single Cantilever Beam (SCB) test
– Fracture toughness reductions due 

to core crush
– Thru-thickness failure locations and 

fracture surfaces

Testing Considerations:
Disbond After Indentation
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• Fracture at core/facesheet
interface for undamaged core

• Fracture propagates along 
crushed core boundary in 
region of indentation

Disbond After Indentation Testing:
Fracture Path Through Core Crush Region
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• Increased fracture toughness in 
regions of crushed core

• Highest GIC obtained in central 
region of core crushing

• Further testing underway

Initial Test Results:
Disbond After Indentation Testing
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Analysis of Notched Sandwich Specimens
ABAQUS with NDBILIN:

• User-defined nonlinear material model                 
(UMAT) for ABAQUS

• Developed by Materials Sciences Corp.

• Stiffness degradation based                                   
progressive damage model

– Bilinear stiffness response used                                 
to model material damaged state

– “Built in” laminated plate theory for 
elements

– Lamina level stiffness degradation

– Max. stress, max. strain or Hashin
failure criteria for damage onset
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Analysis of Notched Sandwich Specimens
Validation of Modeling Approach

• Modeling of damage progression in 
facesheets
– Interlaminar disbond (Mode I and II)

 Cohesive Surfaces
– Laminate tension (+/-45 layup)
– Open-hole tension test
– Open-hole compression test

• Modeling of damage progression in sandwich 
composites
– Sandwich interface disbond (Mode I and II)

 Cohesive Elements
– Sandwich open-hole flexure
– Sandwich open-hole shear
– Sandwich open-hole compression
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Damage Progression in Facesheets:
Interlaminar Disbond

• Calibration of interlaminar cohesive surfaces
– Mode I DCB using ASTM D5528

– Mode II ENF using ASTM D7905
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Damage Progression in Facesheets:
Mixed-Mode Interlaminar Disbond

• Calibration of interlaminar cohesive surfaces
– Mixed-Mode Bend (MMB) using ASTM D6671

– Fit using Benzeggagh-Kenane (B-K) criterion
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Damage Progression in Facesheets:
Analysis of +/-45 Laminates

• Simulation of tension testing of 
IM7/8552 carbon/epoxy laminates

[45/-45]2S 

• NDBILIN matrix shear strength 
and damage parameters were 
modified to model test behavior

21

• Infinite potential solutions exist



Current Focus:
Damage Progression in Facesheets

• Revisit open hole results with updated cohesive surface 
parameters and matrix damage parameters
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Damage Progression in Sandwich Composites:
Interface Disbond

• Calibration of interfacial cohesive elements
– Mode I Sandwich SCB
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Damage Progression in Sandwich Composites:
Mode II and Mixed-Mode 

• Calibration of interfacial cohesive elements
– Mode II and MMB

– Cell buckling at crack tip, no crack growth

– Analytical and numerical models do not account for 
constraint effect on honeycomb core
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Current Focus:
Core Constraint Effect

• Open Face Flexure Tests
– Nomex honeycomb core
– Multiple core thicknesses
– Core modeled explicitly
– Homogeneous core in work
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• 90% load X-ray CT shows 
minimal damage progression

• Model over predicting 
damage progression and 
under predicting failure load

Damage Progression in Sandwich Composites:
Sandwich Open-Hole Flexure Test
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• Core modeled with NDBILIN
• Slight over prediction of max load
• Reload captured

Damage Progression in Sandwich Composites:
Sandwich Open-Hole Shear Test
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• Out-of-plane displacement 
observed in DIC measurements

• First mode facesheet buckling 
observed

• Investigating facesheet buckling 
using ABAQUS Riks

• Zero thickness cohesive 
elements caused numerical 
errors during perturbation step

• Cohesive surfaces 
implemeneted

• Non-linear vs Riks shows a large 
increase in cohesive stress

Damage Progression in Sandwich Composites:
Sandwich Open-Hole Compression Test
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Future Work:
Notch Sensitivity of Composite Sandwich Structures

• Development of sizing guidelines for sandwich open 
hole compression and flexure tests

• Incorporate updated material/model parameters in 
laminate open hole tension/compression simulations

• Explore implementation of homogeneous core for 
Mode II and MMB

• Incorporate initial disbond with Teflon inserts to 
validate buckling model
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Thank you for your attention!

Questions?


