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Impact Damage Formation on Composite Aircraft Structures 
•  Motivation and Key Issues  

•  impacts are ongoing and major source of creating damage 
•  high energy blunt impact damage (BID) of key interest 

•  involves large contact area 
•  damage created can exist with little/no exterior visibility 

•  Sources of Interest:  those that affect wide area or multiple 
structural elements 

•  Needs: (i) establish clear understanding of damage formation 
from blunt sources vs. visibility, (ii) prediction capability 

Hail Ice Impact 
•  upward & forward facing 

surfaces 
•  low mass, high velocity 
•  threat: 38-61 mm diam. 

ice at in-flight speed 

Ground Vehicles &  
Service Equipment  
•  side & lower facing 

surfaces 
•  high mass, low velocity 
•  wide area contact 
•  damage at locations 

away from impact likely 
•  threats: 

 - belt loader ~3,000 kg 
 - cargo loader ~15,000 kg 
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Overall Program Objectives 
•  Source Identification: characterize blunt impact threats – relate to operations 
•  Damage: understand BID formation and visual detectability 

•  determine key failure modes, driving phenomena, governing parameters 
•  how damage and visibility affected by bluntness/contact-area 
•  relate visibility to damage severity for various blunt impact sources 
•  what conditions relate to development of significant internal damage with minimal or no 

exterior visual detectability? 
•  identify & predict failure thresholds (useful for design) 
•  provide guidance on the inspection and detection of BID to internal structural members 

•  Test: develop testing methodologies 
•  defining stiffness and inertial BCs to represent complete structure 
•  establish data for supporting modeling capability development 

•  Prediction: establish new modeling capabilities validated by tests 
•  key failure modes, focusing on those not easily predicted by FEA 
•  guidance on predicting damage visibility – dent and/or visible surface crack 

•  Dissemination: communicating results to industry and collaboration on relevant 
problems/projects via workshops and meetings 



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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Co-‐Cured	  
Composite	  
Skin	  &	  

Stringers	  

Composite	  Frames
(C-‐Shape)

Shear	  Ties:
-‐ Composite
-‐ 7075	  Al	  Alloy

Blunt	  Impact	  
Loading	  Zone	  – on	  
Skin	  Directly	  Onto	  

Shear	  Ties Replaced	  
Central	  9

Large	  Specimen	  Blunt	  Impact	  Tests	  
•  series	  of	  large	  specimens	  (ID:	  	  Frame03,	  
Frame04-‐1,	  	  Frame04-‐2)	  tested	  

•  Frame03	  (composite	  shear	  ?es):	  	  	  
–  internal	  damage	  to	  frames	  and	  shear	  ?es	  
–  no	  skin	  cracking	  /	  no	  visibility	  

•  Frame04-‐2	  (7075	  Al	  shear	  ?es):	  	  
–  direct	  shearing	  of	  frames	  at	  shear	  ?es	  
–  light	  skin	  cracking	  –	  due	  to	  overdriven	  test	  
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GSE High Energy Blunt Impact 
Previous Results Summary I 

04-‐2	  
03	  

Frame	  
Failure	  
Near	  BCs	  

Frame03 Test 
Video 

7075	  Shear	  Ties	   
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Post-Test View of Specimen Frame03 
  -  No Exterior-Visible Damage  
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GSE High Energy Impact – Previous Results Summary II 

Adjacent shear ties fail along 
fastener line on loaded frames

9

Ctr. shear 
ties crushed

Ctr. shear 
ties 

crushed Adjacent shear tie 
failure along fastener 
line (Frames #2 and #4)

Adjacent shear tie failure 
along fastener line (Frame #3)

Good correlation
• initial load drop
• failure mode sequence
• final failure 

Issues with
• initial & intermediate 

failure displacements

Frame failure 
near boundaries

Frame failure 
near boundaries

Modeling	  Results	  as	  of	  March	  2013	  
•  predicts	  failure	  modes	  from	  in-‐plane	  (ply)	  stresses,	  but	  not	  interlaminar	  failures	  

–  ini?al	  mode:	  shear	  ?e	  delamina?on	  occurs	  1st	  –	  affects	  subsequent	  history	  
•  frame	  failure	  mode	  predicted	  

For 2013-2014:  
interlaminar 
failure prediction 
capability 

Shear Tie 
Delamination 
Not Predicted 



•  small-‐scale	  failures	  
affect	  large-‐scale	  
overall	  behavior	  

•  element-‐level	  tests	  
conducted	  to	  
support	  accurate	  	  
model	  development	  
–  key	  failure	  modes	  
–  ini?a?on	  &	  
growth	  

– final	  failure	  
•  no	  “tuning”	  of	  
material	  proper?es	  
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Building Modeling Capability: Element-Level Tests 
Delam.,	  Buckling,	  Bending	  

Bolt	  Line	  Bending	  

Skin	  Surface	  Cracking	  

Underside View of Large Specimen Frame03 

Also: 
•  Frame 

Bending  
•  Frame 

Torsion 
•  Stringer 

Penetrate 
by Frame 
Indentation 

•  Stringer 
Delam. 
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Shear Tie Coupon Compression 
Shear tie coupon cut from full shear tie and loaded under compression. 

•  bolted to base (skin side), simple V-groove at top BC 
Curved geometry 
delaminates due to 
interlaminar tension 
under opening moment. 
 

Shear tie coupon 
modeled via 
•  4-6 layers of 
continuum shell 
elements (SC8R)  

•  cohesive surface 
interactions applied 
between layers 

• Hill criterion for 3D 
failure (intraply fiber 
under σ13 & σ23) 

Initial Geometry 
Before Loading 

Delamination 
Due to 

Opening 
Moment 

Corner 
Failure – 
Shear Tie 
Straightens 

Bending 
Failure 

Following 
Buckling 
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Shear Tie Coupon Compression Results 

4-Layer Model 
Animation 

•  more accuracy with 
increasing number of 
continuum shells through 
thickness 
•  4 layers:  3 plies/group 
•  6 layers:  2 plies/group 

– predicts initial delam. 
onset & final failure well 

•  higher cost – more 
elements and more 
cohesive surface layers 
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Large Panel Modeling 
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Experimental	  
(Combined	  
Frame03	  &	  04)	  

•  accurate modeling capability 
established via element-level test 

•  modeling approach applied to large 
panel 

•  results capture initial response of 
shear ties (delam.) well 

•  final failure not yet reached due to 
stability/cost issues (work in 
progress) 

Full Panel 
Simulation 

Layered Shear 
Ties - View 1 

Delam. Onset 

Shear Tie Failure 

Elem. Distortion 
Issues 

X 
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Skin Cracking Under Bumper Contact Zone 
•  stringer element tests to excite just-visible failure modes by bumper indentation 
•  define FEA criteria indicating visibility – for fabric outer layer, vs. unidirectional 

Surface-
visible Initial 
cracking 

Bending 
+ Transv. 

Shear 



Department of Structural Engineering 
Small Panel Modeling 

Exterior View 

14	


Test and Model Comparison 
•  stringer-skin delamination predicted between 

shear ties  
•  grows from loading location outwards 
•  FEA model successfully matches: 

•  Initial stiffness and failure initiation loads 
•  failure modes and final damage state 

Post-test 
damage state 

(hatched zones 
show skin-to-

stringer 
delamination) 

FEA model predicted 
delamination 

cl
ic

k 
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r a
ni

m
at
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n 

Model Run Beyond Test 
Duration 



Department of Structural Engineering Modeling Capabilities Plan 
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Glancing Impact Size, Complex Internal 
Structure, Geom., Joints 

Various Impactors & 
Scenarios (vo) 

Models of 
Generic 
Curved Panel 
Specimens 
-  Static 
-  Dynamic 
Experimental 
Validation 

 

Capture Key Failure 
Modes (Major Damage) 

 

Damage Initiation Criteria 
 

Damage Progression 
 

Dynamic Effects 
 

Externally Visibility 
 

Establish 
Capabilities 

Define 
Methodologies 
With Element 
Level Tests 
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Apply to study and predict response for: 



Region 1 

Region 2 

Region 2 

Region 3 

Region 3 
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Floor Structure Interaction 

•  Region 1: most compliant – 
large deflection, bending 
dominated 

•  Region 2: more stiff – high 
beam shear stress 

•  Region 3: most stiff – direct 
GSE hits anticipated to 
readily damage frame and 
frame-to-floor joint 

Focus: 
•  frame-to-floor joint 

failure & stiffness/BC 
effect 

•  glancing Impact 
•  damage locations vs. 

contact location vs. 
external visibility 

 

A. explore via modeling 
how affected by 
various structural 
configurations – e.g., 
shear tie geom., 
stringer spacing, etc. 

B. test large specimen 
w/ new geom. Floor Beam 

NEW WORK – 

RECENTLY STARTED 



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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Blunt	  Impact	  Damage	  to	  Sandwich	  Panels	  
•  Inves?gate	  internal	  damage	  morphology	  of	  impacts	  on	  sandwich	  

panels	  using	  blunt	  impact	  sources	  
–  metal	  ?ps	  of	  varying	  ?p	  radii:	  	  R12.7	  to	  R76.2	  mm	  (low	  vel.)	  
–  50.8	  mm	  ice	  spheres	  at	  glancing	  angles	  10	  to	  40	  deg.	  (high	  vel.)	  
–  special	  focus	  on	  levels	  just	  barely	  visible	  damage	  

•  understand	  impact	  condi?ons	  resul?ng	  in	  subsurface	  
damage	  forma?on	  (barely	  visible	  dents)	  

•  focus	  on	  core	  damage	  with	  no	  facesheet	  cracking	  
•  relate	  core	  damage	  severity	  vs.	  dent	  depth	  /	  span	  

•  Determine	  the	  reduc?on	  in	  core	  strength	  /	  fracture	  proper?es	  as	  
func?on	  of	  (i)	  damage	  severity	  and	  (ii)	  dent	  visibility	  
•  direct	  measurement	  
•  modeling	  (including	  predic?on	  of	  impact-‐induced	  damage)	  

•  Inves?gate	  heavier-‐core	  sandwich	  panels	  with	  thicker	  facesheets	  
•  varying	  core	  density,	  varying	  facesheet	  config.	  

Cu
rr
en

tly
	  O
ng
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ng
	  

Fu
tu
re
	  

Di
re
c?
on
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Sandwich	  Panel	  Specimens	  
Tip-‐damaged	  A320	  rudder	  -‐	  received	  from	  Delta	  Airlines	  (P/N	  D554	  71004	  0000)	  

Test	  specimens	  details	  
•  Outer	  facesheet	  thickness	  –	  1.19	  mm	  (0.047	  in.)	  
•  Inner	  facesheet	  thickness	  –	  0.64	  mm	  (0.025	  in.)	  
•  Core	  thickness	  –	  29.4	  mm	  (1.16	  in.)	  
•  Core	  density	  –	  32	  kg/m3	  (2	  lb/b3)	  
•  Cell	  size	  –	  4.76	  mm	  (0.19	  in.)	  
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Low	  Velocity	  Blunt	  Impact	  
•  Pendulum	  Impactor	  with	  1.4	  m	  arm	  
•  Panel	  held	  in	  a	  165	  mm	  (6.5	  in)	  square	  

opening	  window	  
•  12.7	  to	  76.2	  mm	  radius	  ?ps	  represent	  

generic	  low	  velocity	  sources	  

R12.7	   R25.4	   R50.8	   R76.2	  

Dims	  in	  mm	  

Low  Dent 
Relaxation 
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Low	  Velocity	  
Impact	  Damage	  
Progression	  

•  R50.8	  ?ps	  impacts	  
from	  4	  to	  14	  J	  
energy	  

•  For	  increasing	  
energy:	  
–  depth	  of	  core	  
damage	  does	  	  
not	  strongly	  
increase	  

–  span	  of	  crushed	  
zone	  widens	  

–  severity	  of	  core	  
wall	  fracture	  
increases	  

21 

4	  J,	  	  
0.6	  mm	  
Dent	  

6	  J,	  
1	  mm	  
Dent	  

10	  J,	  
1.2	  mm	  
Dent	  

14	  J,	  
1.25	  mm	  
Dent	  

span	  



High	  Velocity	  Ice	  Impact	  –	  Example	  Results	  

Test	  Details:	  
Impact	  Angle:	  25	  degrees	  
Hail	  Diameter:	  50.8	  mm	  
Velocity:	  43.3	  m/s	  
Peak	  Dent	  Depth:	  0.40	  mm	  

Core	  buckling/fracture	  in	  highlighted	  region	  
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Summary:	  	  Core	  Blunt	  Impact	  Damage	  Modes	  

•  Mode	  A:	  slight	  wrinkling	  of	  
cell	  walls	  (not	  easily	  visible)	  

•  Mode	  B:	  clearly	  visible	  
wrinkling	  of	  cell	  walls	  

•  Mode	  C:	  buckling	  of	  cell	  
walls;	  folded	  

•  Mode	  D:	  fracture/	  burs?ng	  
of	  cell	  walls	  

Need	  to:	  
•  understand	  physics	  of	  core	  
damage	  forma?on	  

•  predict	  core	  damage	  via	  FEA	  
•  relate	  core	  damage	  to	  
reduc?on	  in	  core	  strength	  

•  define	  models	  accurately	  
predic?ng	  core	  damage	  
propaga?on	  
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(a) Mode A     (b) Mode B 

 

     
(c) Mode C     (d) Mode D 



Outline 

•  Ground Service Equipment (GSE) 
High Energy Blunt Impact 

•  Blunt Impact Damage to Sandwich 
Panels 

•  Conclusions, Benefits to Aviation, and 
Future Work 
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Conclusions 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  accurate large structure modeling requires development of modeling capability 

based on simple structural element specimen tests 
•  layered modeling approach using continuum shells and cohesive surface 

interactions shown to be capable of predicting delamination and failure under 
high transverse shear 

•  within-ply failure under high out-of-plane shear requires 3D criterion – Hill 
used successfully, but need to implement user-material definition (3D Hashin) 

 
Blunt Impact Damage to Sandwich Panels 
•  significant internal core damage possible with very low dent levels 

–  any surface-visible denting = significant internal core damage 
•  fracture of core walls found to be approx. planar and at fixed depth below 

facesheet/core interface (roughly 1X to 2X cell size) 
•  blunter impacts (larger radius) produce more shallow dents that exhibit more 

relaxation over time 

25 



26 

Benefits to Aviation 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  Understanding of prospective damage produced from wide-area GSE impact events 

•  awareness of phenomena and possible internal failure modes 
•  provides key information on mode and extent of seeded damage, particularly non-

visible impact damage (NVID) from blunt impact threats – for Damage Tol. scenarios 
•  threat conditions causing significant damage – range of energy level needed 

•  Establish FEA modeling capability that can predict: 
•  onset and growth of cracks that lead to large-scale damage and degradation  
•  damage locations – could be away from location of impact 
•  if GSE impact damage is visible from exterior 
•  response of different configuration of interest 

•  Identify how to detect/monitor occurrence of damaging events 
•  key measurable quantities signifying major damage creation – e.g., acoustic waves 
•  what inspection technique should be used? where? 

 

Blunt Impact Damage to Sandwich Panels 
•  Increase understanding of: blunt impact damage modes, governing mechanisms 
•  Insight into properly seeding damage for damage tolerance assessment 
•  Assessment of internal core damage state based on external damage visibility 



Looking Forward 1/2 
Ground Service Equipment (GSE) High Energy Blunt Impact 
•  Include effects of floor joints and floor beams to better represent fuselage structure 
•  Systematically investigate effect of geometry of components on blunt impact damage – 

e.g., geom. and position of stringers, shear ties, frames 
•  Quarter-barrel or half-barrel fuselage tests 

–  needs to include internal floors, joints, and other structure 
–  impact with actual GSE vehicle (or rolling-mass representative) 
–  glancing impact effects 

•  Blunt Impact on Other Structure Types 
–  metal-composite hybrid , all-metal construction, aged metal structures (WFD interest) 
–  sandwich construction 
–  non-fuselage locations – e.g., lower wing and empennage surfaces 

•  Continued developments to establish high fidelity FEA modeling capability 
–  accurately predict damage initiation, progressive failure process, damage extent, energy 

absorption, accounting for interlaminar failures 
•  Define generally-applicable visibility metrics and failure criterion compatible with FEA 
•  NDE methods for finding major damage to internal structure, including frame cracks and 

shear tie failures  
•  Education/Training: dissemination of results, host workshops 
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Looking Forward 2/2 
Blunt Impact Damage to Sandwich Panels 
•  Relate observations of internal core damage depth and span to external visibility 
•  Compression after impact testing of the panels tested – relate residual strength to types of 

damage 
•  Establish capability within explicit FEA simulation to predict: 

–  blunt impact induced damage modes, size, and severity 
–  post-impact residual strength reduction – damage propagation under peel and transverse shear 

•  Conduct post-impact facesheet peel/fracture tests 
–  focus on sub-visible core damage effects 
–  damage modes and morphology relationship to core, facesheet, and adhesive attributes 
–  correlate results with FEA predictions 

•  Investigate effect of multi-hit and impact adjacency 
•  Determine how core/facesheet/fillets interact with each other as related to impact damage 

formation, location, and subsequent disbond growth 
•  Explore efficient and effective NDE methods to assess core damage 
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