

Impact Damage Formation on Composite Aircraft Structures

Hyonny Kim, Dept. Structural Engineering, UC San Diego

JAMS 2014 Technical Review March 25-26, 2014

Univ. Washington, Seattle WA

Impact Damage Formation on Composite Aircraft Structures

- Principal Investigators & Researchers
 - PI: Prof. Hyonny Kim, Professor, UCSD
 - Graduate Students
 - PhD: Zhi Chen, Sara White
 - MS: Monica Chan, Sean Luong
- FAA Technical Monitor
 - Lynn Pham
- Other FAA Personnel Involved
 - Curt Davies
 - Larry Ilcewicz
- Industry Participation
 - Boeing, Bombardier, Cytec, UAL, Delta
 - San Diego Composites, JC Halpin, Avanti Tech
 - Coordination with Bishop GMBH (EASA-funded)

Impact Damage Formation on Composite Aircraft Structures

- Motivation and Key Issues
 - impacts are ongoing and major source of creating damage
 - high energy <u>blunt</u> impact damage (BID) of key interest
 - involves large contact area
 - damage created can exist with *little/no exterior visibility*
- **Sources of Interest:** those that affect wide area or multiple structural elements
- Needs: (i) establish clear understanding of damage formation from <u>blunt</u> sources vs. visibility, (ii) prediction capability

Hail Ice Impact

- upward & forward facing surfaces
- low mass, high velocity
- threat: 38-61 mm diam. ice at in-flight speed

Ground Vehicles & Service Equipment

- side & lower facing surfaces
- high mass, low velocity
- wide area contact
- damage at locations away from impact likely
- threats:
 - belt loader ~3,000 kg
 - cargo loader ~15,000 kg

Overall Program Objectives

- **Source Identification:** characterize blunt impact threats relate to operations
- Damage: understand BID formation and visual detectability
 - determine key failure modes, driving phenomena, governing parameters
 - how damage and visibility affected by bluntness/contact-area
 - relate visibility to damage severity for various blunt impact sources
 - what conditions relate to development of significant internal damage with minimal or no exterior visual detectability?
 - identify & predict failure thresholds (useful for design)
 - provide guidance on the inspection and detection of BID to internal structural members
- Test: develop testing methodologies
 - defining stiffness and inertial BCs to represent complete structure
 - establish data for supporting modeling capability development
- Prediction: establish new modeling capabilities validated by tests
 - key failure modes, focusing on those not easily predicted by FEA
 - guidance on predicting damage visibility dent and/or visible surface crack
- **Dissemination:** communicating results to industry and collaboration on relevant problems/projects via workshops and meetings

Outline

- Ground Service Equipment (GSE)
 High Energy Blunt Impact
- Blunt Impact Damage to Sandwich
 Panels
- Conclusions, Benefits to Aviation, and Future Work

GSE High Energy Blunt Impact Previous Results Summary I

Large Specimen Blunt Impact Tests

- series of large specimens (ID: Frame03, Frame04-1, Frame04-2) tested
- Frame03 (composite shear ties):
 - internal damage to frames and shear ties
 - no skin cracking / no visibility
- Frame04-2 (7075 Al shear ties):
 - direct shearing of frames at shear ties
 - light skin cracking due to overdriven test

Post-Test View of Specimen Frame03 - No Exterior-Visible Damage

GSE High Energy Impact – Previous Results Summary II

Modeling Results as of March 2013

- predicts failure modes from in-plane (ply) stresses, but not interlaminar failures
 - initial mode: shear tie delamination occurs 1^{st} affects subsequent history

Fracture due

• frame failure mode predicted

For 2013-2014:

failure prediction

interlaminar

capability

Building Modeling Capability: Element-Level Tests

- small-scale failures affect large-scale overall behavior
- element-level tests conducted to support accurate model development
 - key failure modes
 - initiation & growth
 - final failure
- no "tuning" of material properties

b)

FRAMEOS

Underside View of Large Specimen Frame03

- Frame Bending Frame
- Torsion
- Stringer Penetrate by Frame Indentation
- Stringer Delam.

Shear Tie Coupon Compression

Shear tie coupon cut from full shear tie and loaded under compression.

bolted to base (skin side), simple V-groove at top BC

Before Loading

Curved geometry delaminates due to interlaminar tension under opening moment.

Shear tie coupon modeled via

- 4-6 layers of continuum shell elements (SC8R)
- cohesive surface interactions applied between layers
- Hill criterion for 3D failure (intraply fiber under $\sigma_{13} \& \sigma_{23}$)

Failure –

Shear Tie

Straightens

Due to

Opening

Moment

Failure Following Buckling

Shear Tie Coupon Compression Results

4-Layer Model Animation

- more accuracy with increasing number of continuum shells through thickness
 - 4 layers: 3 plies/group
 - 6 layers: 2 plies/group – predicts initial delam. onset & final failure well
- higher cost more elements and more cohesive surface layers

Large Panel Modeling

- accurate modeling capability established via element-level test
- modeling approach applied to large panel
- results capture initial response of shear ties (delam.) well
- final failure not yet reached due to stability/cost issues (work in progress)

Skin Cracking Under Bumper Contact Zone

- stringer element tests to excite just-visible failure modes by bumper indentation
- define FEA criteria indicating visibility for fabric outer layer, vs. unidirectional

Small Panel Modeling

Test and Model Comparison

- stringer-skin delamination predicted between shear ties
- grows from loading location outwards
- FEA model successfully matches:
 - Initial stiffness and failure initiation loads
 - failure modes and final damage state

Post-test damage state (hatched zones show skin-tostringer delamination)

Modeling Capabilities Plan

Floor Structure Interaction

Region 2

Focus:

- frame-to-floor joint failure & stiffness/BC effect
- glancing Impact
- damage locations vs. contact location vs. external visibility
- Region 1: most compliant large deflection, bending dominated
- Region 2: more stiff high beam shear stress
- **Region 3**: most stiff direct GSE hits anticipated to readily damage frame and frame-to-floor joint Region 2

Outline

- Ground Service Equipment (GSE)
 High Energy Blunt Impact
- Blunt Impact Damage to Sandwich Panels
- Conclusions, Benefits to Aviation, and Future Work

Currently Ongoing

Blunt Impact Damage to Sandwich Panels

- Investigate internal damage morphology of impacts on sandwich panels using blunt impact sources
 - metal tips of varying tip radii: R12.7 to R76.2 mm (low vel.)
 - 50.8 mm ice spheres at glancing angles 10 to 40 deg. (high vel.)
 - special focus on levels just barely visible damage
 - understand impact conditions resulting in subsurface damage formation (barely visible dents)
 - focus on core damage with no facesheet cracking
 - relate core damage severity vs. dent depth / span
- Determine the reduction in core strength / fracture properties as function of (i) damage severity and (ii) dent visibility
 - direct measurement
 - modeling (including prediction of impact-induced damage)
- Investigate heavier-core sandwich panels with thicker facesheets
 - varying core density, varying facesheet config.

Future Direction

Sandwich Panel Specimens

Tip-damaged A320 rudder - received from Delta Airlines (P/N D554 71004 0000)

Test specimens details

- Outer facesheet thickness 1.19 mm (0.047 in.)
- Inner facesheet thickness 0.64 mm (0.025 in.)
- Core thickness 29.4 mm (1.16 in.)
- Core density 32 kg/m³ (2 lb/ft³)

Low Velocity Blunt Impact

- Pendulum Impactor with 1.4 m arm
- Panel held in a 165 mm (6.5 in) square opening window
- 12.7 to 76.2 mm radius tips represent generic low velocity sources

Low Velocity Impact Damage Progression

- R50.8 tips impacts from 4 to 14 J energy
- For increasing energy:
 - depth of core damage does not strongly increase
 - span of crushed zone widens
 - severity of core wall fracture increases

High Velocity Ice Impact – Example Results

Test Details: Impact Angle: 25 degrees Hail Diameter: 50.8 mm Velocity: 43.3 m/s Peak Dent Depth: 0.40 mm

Core buckling/fracture in highlighted region

Summary: Core Blunt Impact Damage Modes

- Mode A: slight wrinkling of cell walls (not easily visible)
- Mode B: clearly visible wrinkling of cell walls
- Mode C: buckling of cell walls; folded
- Mode D: fracture/ bursting of cell walls

(a) Mode A

(b) Mode B

Need to:

- understand physics of core damage formation
- predict core damage via FEA
- relate core damage to reduction in core strength
- define models accurately predicting core damage propagation

(c) Mode C

(d) Mode D

Outline

- Ground Service Equipment (GSE)
 High Energy Blunt Impact
- Blunt Impact Damage to Sandwich Panels
- Conclusions, Benefits to Aviation, and Future Work

Conclusions

Ground Service Equipment (GSE) High Energy Blunt Impact

- accurate large structure modeling requires development of modeling capability based on simple structural element specimen tests
- layered modeling approach using continuum shells and cohesive surface interactions shown to be capable of predicting delamination and failure under high transverse shear
- within-ply failure under high out-of-plane shear requires 3D criterion Hill used successfully, but need to implement user-material definition (3D Hashin)

Blunt Impact Damage to Sandwich Panels

- significant internal core damage possible with very low dent levels
 - any surface-visible denting = significant internal core damage
- fracture of core walls found to be approx. planar and at fixed depth below facesheet/core interface (roughly 1X to 2X cell size)
- blunter impacts (larger radius) produce more shallow dents that exhibit more relaxation over time

Benefits to Aviation

Ground Service Equipment (GSE) High Energy Blunt Impact

- Understanding of prospective damage produced from wide-area GSE impact events
 - awareness of phenomena and possible internal failure modes
 - provides key information on mode and extent of seeded damage, particularly nonvisible impact damage (NVID) from blunt impact threats – for Damage Tol. scenarios
 - threat conditions causing significant damage range of energy level needed
- Establish FEA modeling capability that can predict:
 - onset and growth of cracks that lead to large-scale damage and degradation
 - damage locations could be away from location of impact
 - if GSE impact damage is visible from exterior
 - response of different configuration of interest
- Identify how to detect/monitor occurrence of damaging events
 - key measurable quantities signifying major damage creation e.g., acoustic waves
 - what inspection technique should be used? where?

Blunt Impact Damage to Sandwich Panels

- Increase understanding of: blunt impact damage modes, governing mechanisms
- Insight into properly seeding damage for damage tolerance assessment
- Assessment of internal core damage state based on external damage visibility

Looking Forward 1/2

Ground Service Equipment (GSE) High Energy Blunt Impact

- Include effects of floor joints and floor beams to better represent fuselage structure
- Systematically investigate effect of geometry of components on blunt impact damage e.g., geom. and position of stringers, shear ties, frames
- Quarter-barrel or half-barrel fuselage tests
 - needs to include internal floors, joints, and other structure
 - impact with actual GSE vehicle (or rolling-mass representative)
 - glancing impact effects
- Blunt Impact on Other Structure Types
 - metal-composite hybrid, all-metal construction, aged metal structures (WFD interest)
 - sandwich construction
 - non-fuselage locations e.g., lower wing and empennage surfaces
- Continued developments to establish high fidelity FEA modeling capability
 - accurately predict damage initiation, progressive failure process, damage extent, energy absorption, accounting for interlaminar failures
- Define generally-applicable visibility metrics and failure criterion compatible with FEA
- NDE methods for finding major damage to internal structure, including frame cracks and shear tie failures
- Education/Training: dissemination of results, host workshops

Looking Forward 2/2

Blunt Impact Damage to Sandwich Panels

- Relate observations of internal core damage depth and span to external visibility
- Compression after impact testing of the panels tested relate residual strength to types of damage
- Establish capability within explicit FEA simulation to predict:
 - blunt impact induced damage modes, size, and severity
 - post-impact residual strength reduction damage propagation under peel and transverse shear
- Conduct post-impact facesheet peel/fracture tests
 - focus on sub-visible core damage effects
 - damage modes and morphology relationship to core, facesheet, and adhesive attributes
 - correlate results with FEA predictions
- Investigate effect of multi-hit and impact adjacency
- Determine how core/facesheet/fillets interact with each other as related to impact damage formation, location, and subsequent disbond growth
- Explore efficient and effective NDE methods to assess core damage

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE