

Buckling/Crippling of Structural Angle Beams Produced using Discontinuous-Fiber Composites

2012 Technical Review presented by:

Mark Tuttle University of Washington

Buckling/Crippling of Structural Angle Beams Produced-Using-Discontinuous-Fiber Composites

- Motivation and Key Issues
 - Use of compression-molded discontinuous fiber composites (DFC) in transport aircraft is increasing
 - Method(s) of predicting stiffness/failure of complex
 DFC parts have not been fully explored
 - Certification of DFC parts currently achieved by testing large numbers of individual parts (i.e., certification by "point design")
 - Point design is time-consuming, costly, and likely leads to over-conservative part designs
 - Desire to transition to certification based on analysis supported by experimental testing

Buckling/Crippling of Structural Angle Beams Produced Using Discontinuous-Fiber Composites

- Motivation and Key Issues (continued)
 - A compression-molded DFC called HexMC[™] being used in the Boeing 787
 - Basic material properties of HexMC (e.g., tensilecompression stiffness & strength) measured using coupon specimens show high levels of scatter compared with continuous-fiber composites:
 - Feraboli et al:
 - (a) J. Composite Materials, Vol 42, No 19 (2009)
 - (b) J. Reinf. Plastics and Composites, Vol 28, No 10 (2009)
 - (c) Composites Part A, Vol 40 (2009)
 - Can mechanical behavior of a "complex" part be predicted based standard analyses techniques and coupon data?

Buckling/Crippling of Structural Angle Beams Produced Using Discontinuous-Fiber Composites

- Objective
 - Determine whether the elastic and failure behavior of of HexMC angle beams (a "complex part") subjected to pure bending loads can be well-predicted based on nominal HexMC properties measured using coupon specimens

Buckling/Crippling of Structural Angle Beams Produced-Using Discontinuous-Fiber Composites

- Approach
 - Prismatic HexMC angle beams with three cross-section sizes tested in 4-point bending
 - Elastic tests (reported during JAMS 2011):
 - Tested in six orientations relative to the bending moment vector
 - Three replicate tests:
 - (3 sizes x 3 replicates x 6 orientations = 54 tests)
 - On average, bending stiffnesses well-predicted: scatter comparable to scatter in coupon tests reported by Feraboli
 - Fracture tests (the focus of this presentation)
 - Beams tested to failure in one orientation
 - At least five replicate tests for each beam size
 - Measurements compared with FE analyses performed using NASTRAN

Buckling/Crippling of Structural Angle Beams Produced-Using Discontinuous-Fiber Composites

- Principal Investigators & Researchers:
 - PI: Mark Tuttle
 - Grad Students: Tory Shifman, Brian Head
- FAA Technical Monitor
 - Lynn Pham
- Other FAA Personnel Involved
 - Larry Ilcewicz and Curt Davies
- Industry Participation
 - Boeing: Bill Avery
 - Hexcel: Bruno Boursier and David Barr

HexMC Angle Beams

- Compression molded by Hexcel
 - 4.8 x 89 mm ("Large") (0.188 x 3.5 in)
 - 4.8 x 64 mm ("Medium") (0.188 x 2.5 in)
 - 2.5 x 43 mm ("Small") (0.097 x 1.7 in)
- After receipt all beams were machined to 36 cm (14 in) length

HexMC Angle Bend Tests

• HexMC angle beams subjected to four point bending loads

Four-Point Bending Fixture

Fixture mounted in Instron
 5585H Universal Test Frame

Typical Test – Small Beam Specimen S3

Typical Test – Small Beam Specimen S3

11

All Small Beam Results

12

Typical Test – Large Beam Specimen L2

All Large Beam Results

nort Aircraft Structure

All Medium Beam Results

Specimen M3 at 3700 lbf \leftrightarrow 37,000 in-lbf

Specimen M3 at 3000 lbf ↔30,000 in-lbf

Summary – All Experimental Results

- •For small and large beams:
 - (a) compressive flange buckles at loads/displacements well before fracture
 - (b) fractures in compressive flange only

•For medium beams:

- (a) bending moment necessary to cause buckling <u>or</u> fracture nearly identical
- (b) fractures in both tensile and compressive flanges

FEA Modeling

- Beams modeled in FEMAP, a pre/post processer for the NX Nastran solver
- Modeled with Shell Elements
 - Solid elements were also tried
 - Element size sensitivity studies done
- Modeled over a range in moduli measured by Feraboli [1]
 - 5.10 Msi to 7.66 Msi
 - Also modeled over a range of Poisson's ratios
- Boundary conditions
 - Fixed left end
 - Enforced rotation of right end
- Compared to range in tensile strengths reported in [1]
 - 36.9 ksi to 44.5 ksi

FEA Meshes

Small Angle Mesh

Medium Angle Mesh

Large Angle Mesh

FEA Results

Large Angle Mesh

FEA Results

High Modulus Beams Stress Contour

Small Angle

Medium Angle

Large Angle

	Measured	Predicted	%	Measured	Predicted	%
	Buckling	Buckling	Difference	Failure	Failure	Difference
	Moment	Moment		Moment	Moment	
	(in-lbf)	(in-lbf)		(in-lbf)	(in-lbf)	
Small Beam	2765	3207	16.0	2850	3450	21.1
	2191.634	2612	19.2	2340	2780	18.8
Medium	N/A [†]	22050	N/A	19840	20400	2.82
Beam	N/A^{\dagger}	17050	N/A	17350	16700	-3.75
Large Beam	22647	25250	11.5	24350	30540	25.4
	17705	17180	-2.98	18260	21660	18.6

[†]Some of the medium specimens reached 10% deviation from linear within ~10 in-lbf of failure

Buckling defined as >10% deviation from linear behavior

Summary

- Overall goal: simplify certification of DFC aircraft parts
- Objective of current study: Determine if nominal properties measured during coupon-level tests can be used to predict response of HexMC angles in bending
- Results:
 - Elastic stiffness (JAMS '11): Average elastic bending stiffnesses reasonably well-predicted: scatter comparable to scatter in coupon tests reported by Feraboli
 - Buckling/fracture (focus of this presentation):
 - Predicted buckling of compressive flange in small and large beams agrees with measurements; however
 - Buckling and failure loads overpredicted (FE analysis will be repeated using compressive modulus and strength measured by Feraboli)
 - FE analysis of medium beam consistent with measurements (e.g., buckling load predicted to be slightly higher than fracture load)

Principal activities for next year

Study mechanical performance of an intercostal (both experimental and FEA)

• Benefit to Aviation:

Results of this study will ultimately help establish a method to certify DFC aircraft parts by analysis supported by experimental measurements.

Thank you for your attention!

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE