

An Engineering Approach for Damage **Growth Analysis of Sandwich Structures Subjected to Combined Compression and Pressure Loading**

2018 Technical Review

Waruna Seneviratne, John Tomblin, Shenal Perera and **Pirashandan Varatharaj**

WICHITA STATE UNIVERSITY

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Research Team

- National Institute for Aviation Research
 - PI: Waruna Seneviratne, PhD
 - PI: John Tomblin, PhD
 - Shenal Perera
 - Pirashandan Varatharaj

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

- FAA
 - Zhi-Ming Chen (Current TM)
 - Larry Ilcewicz, PhD

Kansas Aviation Research & Technology Growth Initiative

An Engineering Approach for Damage Growth Analysis of Sandwich Structures Subjected to Combined Compression and Pressure Loading

Motivation and Key Issues

- Thermo-mechanical loads during ground-air-ground (GAG) cycling result in localized mode I stresses that cause further delamination/disbond/core fracture growth.
- Objective
 - Develop an engineering approach for damage tolerance analysis of sandwich structures subjected to combined mechanical and pressure loads.

Approach [Shown in the next slide]

- Engineering Approach [Discussed in next slide]
 - SCB Testing (Obtain GIC facture toughness values)
 - FEA Analysis on SCB Test and Validate modeling techniques
 - Develop a test method for GAG (Edgewise Compression) specimens.
 - Develop High Fidelity FEA models for GAG Specimens
 - Blind Predictions Comparing GAG FEA Data with Test Data

Analysis – Engineering Approach

SCB → GAG

Research Overview

- Single-cantilever beam (SCB) testing/simulations
 - Test/conditioning procedures (2009 2010)
 - Static (2010-2012)
 - Fatigue (2010-2012)
 - Finite element analysis (2017-2018)
- Ground-air-ground (GAG) testing/simulations
 - Edgewise compression (2015 2018)
 - Static/Fatigue
 - Further studies (2018-)
 - Sandwich damage growth simulations
 - SCB to GAG

Ҟ Mode I (G1c) Fracture Toughness of Composite Sandwich Structures for Use in Damage Tolerance Design and Analysis

- Volume 1: Static Testing Including Effects of Fluid Ingression (DOT/FAA/TC-16/23)
- Volume 2: Fatigue Testing Including Effects of Fluid Ingression (DOT/FAA/TC-17/06)
- Volume 3: *Damage Growth in Sandwich Structures (under review)*

Ground-Air-Ground testing (Load + Pressure + Environment)

Engineering approach for analysis of GAG element (*On going*)

NIA

Outline

• SCB Test Configuration

- Test Setup
- Finite Element Model Description for SCB Specimens
 - Modeling approach
 - Comparison to test data
- GAG Edgewise Compression [EWC] Test Configuration
 - Test Setup
 - Static and fatigue testing
- Finite Element Model description for GAG Specimens
 - Modeling approach
 - Comparison to test data
- Summary

SCB Test Configuration

Material

- Machined
- Facesheet: T650 5320
- Core: Hexcel HRH-10
- Adhesive: FM300 2
- Prescribed Crack
 - Created with Teflon inserts
 - ao = 2in

- L=10.oin
- b=2in
- Piano Hinge
 - Bonded using EA9394

Test Matrix

Case	Facesheet Material	Plies	Cell Size (in)	Core Density (lb/ft^3)	Core Thickness (in)
1	T650/5320-PW	4	1/8	3.0	1.0
2	T650/5320-PW	4	1/8	6.0	0.5
3	T650/5320-PW	4	3/8	3.0	0.5
4	T650/5320-PW	8	1/8	6.0	0.5

Facesheet = [45/0/0/45]

- SCB Test Configuration
 - Test Setup
- Finite Element Model Description for SCB Specimens
 - Modeling approach
 - Comparison to test data
- GAG Edgewise Compression [EWC] Test Configuration
 - Test Setup
 - Static and fatigue testing
- Finite Element Model description for GAG Specimens
 - Modeling approach
 - Comparison to test data
- Summary

WICHITA STATE

UNIVERSITY

NIAR

FEA – SCB Model Approach

FEA – SCB Model Description and Approach

- Four configurations with different core density, cell size and face-sheet size were considered.
- Core core failure.
- Cohesive zone to model the damage in the core.

Test Data Comparison – Summary

Casa	Facesheet Material	Plies	Cell Size (in)	Core Density (lb/ft^3)	Core Thickness (in)	Exp .5%Max	Simulation Crack Initiation Load	
Case						Load (lbs)	FEA Load (lbs)	Error (%)
1	T650/5320-PW	4	1/8	3.0	1.0	21.38	22.0	2.90
2	T650/5320-PW	4	1/8	6.0	0.5	27.53	28.0	1.71
3	T650/5320-PW	4	3/8	3.0	0.5	15.52	14.63	6.08
4	T650/5320-PW	8	1/8	6.0	0.5	60.67	57.9	4.57

T650/5320-PW-4P-1/8-3.0-1.0

T650/5320-PW-4P-1/8-6.0-0.5

T650/5320-PW-4P-3/8-3.0-0.5

T650/5320-PW-8P-1/8-6.0-0.5

Outline – Moving Forward

- SCB Test Configuration
 - Test Setup
 - Failure moods. [As in final FAA report 1 and 2]
- Finite Element Model description for SCB Specimens
 - Modeling approach
 - Comparison to test data
- GAG Edgewise Compression [EWC] Test Configuration
 - Test Setup
 - Static and fatigue testing
- Finite Element Model description for GAG Specimens
 - Modeling approach
 - Comparison to test data
- Summary

GAG - Edgewise Compression [EWC] Test Setup

Ability to accommodate various specimen sizes •10x12 (shown) and 18x20 (test size)

Damage Growth monitoring

Digital Image Correlation (DIC)

GAG - Edgewise Compression [EWC] Specimen Configuration

NIAR

WICHITA STATE UNIVERSITY

GAG [EWC] Testing - Static

- Completed testing on selected configuration as a baseline for the FE model.
- Used this data to conduct initial comparison with FEA data.

GAG [EWC] Cyclic Testing - Fatigue

- Loading conditions
 - Pressure only
 - Load only
 - Pressure and load
- Environmental conditions
 - RTA

Outline – Moving Forward

- SCB Test Configuration
 - Test Setup
 - Failure moods. [As in final FAA report 1 and 2]
- Finite Element Model description for SCB Specimens
 - Modeling approach
 - Comparison to test data
- GAG Edgewise Compression [EWC] Test Configuration
 - Test Setup
 - Static and fatigue testing

Finite Element Model Description for GAG Specimens

- Modeling approach
- Comparison to test data
- Summary

- FE analysis for static loading.
- Took the same optimized parameters as in SCB analysis.
- Used cohesive zone method to model the damage in the core.
- Detail explanation of the modeling strategy will be in the final report.

NIAR

FEA – GAG [EWC] Model Description [Loading and Boundary **Conditions**] **Boundary Conditions and Loading Points**

- Apply loading from the top surface as displacement.
- Apply pressure through the pressure port.
- Apply BC's to the edges of the specimen to closely represent the test setup.

GAG Test Data Comparison Summary

Case	Facesheet Material	Plies	Cell Size	Core	Exp	Simulation Crack Initiation Load		
				Density	Load (<u>lbs</u>)	FEA Load (Ibs)	Error (%)	
1	T650/5320 PW	4	1/8	3.0	16309	17614	8	
2	T650/5320 PW	4	1/8	6.0	•	19958	-	
3	T650/5320 PW	4	3/8	3.0	•	17438		
4	T650/5320 PW	8	1/8	6.0	•	•	-	
Awaiting Results								

Blind prediction on going.

- SCB Test Configuration
 - Test Setup
- Finite Element Model description for SCB Specimens
 - Modeling approach
 - Comparison to test data
- GAG Edgewise Compression [EWC] Test Configuration
 - Test Setup
 - Static and fatigue testing
- Finite Element Model description for GAG Specimens
 - Modeling approach
 - Comparison to test data
- Summary

NIAR

WICHITA STATE UNIVERSITY

Summary

Activity Summary

- SCB analysis methods are presented with results and compared with test data.
 - SCB FEA data is within 16% compared to test data [after GAG (EWC) feedback]
- GAG analysis methods are presented with results and compared with initial test data.
 - Initial GAG FEA data is within 9% compared to test data
- Future Work
 - Improve analysis using "orthotropic values" as cohesive zone parameters (Fracture toughness and penalty stiffness values).
 - After validating Flat Edgewise Compression models move on to curved Edge wise Compression models and validate it.
 - Automation of modeling technique.
 - Preform GAG testing with large flex test and validate with FEA models.

Looking Forward

- Benefit to Aviation
 - Guidelines for substantiating sandwich structures
 - GAG effects on damage growth
- Future needs
 - Field history data related to sandwich data growth phenomenon

