

Composite Damage Material Modeling for Crash Simulation: MAT54 & the Efforts of the CMH-17 Numerical Round Robin

2014 Technical Review Bonnie Wade (UW) Prof. Paolo Feraboli

AMTAS (JAMS) Crashworthiness Research Contributions

Experiment

- Material property testing of AGATE material system, quasi-static
- Crush testing of flat coupons & eight element-level geometries, quasi-static
- Three journal articles published on experimental work

Analysis

- LS-DYNA composite damage material model MAT54 single element characterization
- LS-DYNA crush simulations of eight element-level geometries
- MAT54 source code modifications & material modeling improvements
- LS-DYNA MAT54 CMH-17 Crashworthiness Numerical RR entry
- Summary report for CMH-17 Numerical RR
- One journal article published, two in review; Two FAA Technical Reports delivered

Educational Module

- 2012 FAA Level II Course classroom lecture: presentation notes & video provided
- One FAA Technical Report delivered

Challenges in composites crashworthiness

- Composites are non homogenous damage can initiate and propagate in many ways, specifics of which cannot be predicted
- Many different failure mechanisms can occur (fiber breakage, matrix cracking, shearing, delamination, etc.) and damage growth is not self-similar

- Current FEA technology cannot capture details of individual failure modes, but needs to make approximations. The key is to know how to make the right approximations
 - Material failure is treated macroscopically: cannot account for differences between failure mechanisms
- In this research, the Building Block Approach is employed to develop an experimental program which supports the development of the composite structure crash analysis
- The development of the material model to simulate composites crash damage is the focus

Building Block Approach applied to composites crashworthiness

- Crash analysis is supported by test evidence at numerous structural levels
- The material model is often developed using coupon-level experimental data

Crush element simulated with material model

Key findings from element-level crush experiments

- Flat coupon-level crush tests and eight different element-level crush tests performed on a single material system & lay-up
- Specific energy absorption (SEA) results varied from 23-78 J/g, depending on geometry
 - SEA depends directly on geometric curvature

- The energy absorption capability of a material, measured by SEA, is not a material property
 - Cannot be experimentally quantified at the coupon-level

Composite damage material models

- Composites are modeled as orthotropic linear elastic materials within a failure surface
 - Linear elastic behavior defined by coupon-level material properties
- Failure surface is defined by the failure criteria
 - Failure criteria often require ultimate stress values measured from coupon-level experiments
- Beyond the failure surface, damage is modeled in one of two ways:
 - Progressive Failure Model (PFM): Specific ply properties go to zero, ply by ply failure until all plies have failed and element is eroded
 - Continuum Damage Mechanics (CDM): Uses damage parameters to degrade ply properties in a continuous form
- Ultimate material failure (i.e. element erosion) also requires a set of criteria

CMH-17 Crashworthiness WG Numerical RR

- Initiated in 2008 by Dr. Rassaian (Boeing Research & Technology), the Numerical Round Robin set out to evaluate the predictive capabilities of commercial composite crash modeling codes
- Each approach has own material model (includes failure criteria & damage model) element type, contact definition, crushing trigger mechanism, etc.

Participant	Company/ Organization	FE Code	Material model	Element
G. Barnes	Engenuity	Abaqus	C-Zone	Single shell
P. Feraboli	University of Washington	LS-DYNA	MAT54	Single shell
R. Foedinger	Material Sciences Corp.	LS-DYNA	MAT162	3D brick
K. Indermuehle	Simulia	Abaqus Explicit	VUMAT	Stacked shells
A. Johnson	DLR	PAM-CRASH	MAT131	Stacked shells
J.B. Mouillet	Altair Engineering	Radioss	Crasurv	Stacked shells
M. Rassaian	Boeing Research & Technology	LS-DYNA	MAT58	Single shell

- Round I: simulate corrugated element-level specimen crushing
- Round II: simulate five tubular element-level specimens crushing

LS-DYNA MAT54 composite damage model

- MAT54 is a progressive failure model for shell elements
- Four mode-based failure criteria for "fiber" (axial) and "matrix" (transverse) failure in tension and compression (Hashin [1] failure criteria as modified by Chang/Chang [2])
- Element erosion based on maximum strain values
- Most input parameters are derived from standardized coupon-level experiments
 - Tension/Compression and shear: modulus, strength, strain to failure
- Limited number of other parameters that cannot be measured experimentally, and need to be calibrated by trial and error
- Ideal candidate for large-scale crash simulation

*MAT_054 (ENHANCED_COMPOSITE_DAMAGE)							
mid	ro	ea	eb	ec	prba	prea	preb
1	1.50E-4	1.84E+7	1.22E+6	0.0	0.02049	0.0	0.0
gab	gbe	gea	kf	aopt			
6.10E+5	6.10E+5	6.10E+5	0.0	0.0			
xp	ур	zp	al	a2	a3	mangle	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	
vl	v2	v3	dl	d2	d3	dfailm	dfails
0.0	0.0	0.0	0.0	0.0	0.0	0.024	0.03
tfail	alph	soft	fbrt	ycfac	dfailt	dfailc	efs
1.1530E-9	0.1	0.0	0.5	1.2	0.0174	-0.0116	0.0
xc	xt	yc	yt	sc	crit	beta	
213000	319000	28800	7090	22400	54	0.5	

1. Constitutive properties: RO, EA, EB, EC, PRBA, PRCA, PRCB, GAB, GBC, GCA, KF

2. Local material axes: AOPT, XP, YP, ZP, A1-A3, MANGLE, V1-V3, D1-D3

3. Shear weighing factors: ALPH, BETA5. Damage factors: SOFT, FBRT, YCFAC

TFAIL, DFAILT, DFAILC, EFS

4. Deletion parameters: DFAILM, DFAILS,

6. Material strengths: XC, XT, YC, YT, SC

7. Failure criterion selection: CRIT

[1] Z. Hashin, "Failure criteria for unidirectional fiber composites," Journal of Applied Mechanics, vol. 47, pp. 329-334, 1980.

[2] F. Chang and K. Chang, "A progressive damage model for laminated composites containing stress concentrations," *Journal of Composite Materials*, vol. 21, pp.834-855, 1987.

MAT54: CMH-17 Round I challenge

- Given only coupon-level material property data, the model is developed successfully but could not predict the crushing behavior of the sinusoid
- Sensitivity studies on the MAT54 input parameters revealed that one of the nonexperimentally derived parameters, SOFT, directly influences the post-failure damage simulated in crush-front elements, thereby directly changing the average crushing load

- Without element-level crush data, the correct value of SOFT cannot be estimated
- The other non-experimental parameters (e.g. ALPH, BETA, YCFAC, FBRT) were found to not have an influence on the crush element simulation

MAT54: Parametric studies

- Using the Round I specimen, sensitivity studies were performed on all MAT54 input parameters as well as other relevant modeling parameters (contact model, mesh size, loading speed, etc.) (Published 2011 [3])
- These studies reveal important or sensitive parameters
 - Some results are expected: influence of compressive axial properties, XC and DFAILC, upon average crushing load
 - Some results are revealing: influence of contact definition LP curve on stability & influence of crush trigger elements (first row) thickness on initial load peak
 - Some results are unexpected: influence of transverse failure strain, DFAILM, on stability; required enlargement beyond experimentally measured value for stability

- XC \geq 105 ksi — XC = 103 ksi, baseline 5000 -XC = 90 ksi4000 ♦ XC = 75 ksi [q] 3000 └── XC = 50 ksi 2000 1000 0.25 0.5 0.75 Displacement [in] 1.25 1.5 6000 5000 -D-t = 0.06 in. 4000 9 = 0.052 in. 귵 3000 t = 0.04 in. - t = 0.03 in. 2000 -t = 0.01 in. 1000 0 Displacement [in] 0.25 6.000 - DFAILM ≥ 0.028 (Baseline = 0.06)5.000 DFAILM = 0.027 4,000 Load [1b] 3'000 DFAILM = 0.0141 (Nominal material value) 2,000 1,000 0 0.50 0.75 1.00 Displacement [in] 0.00 0.25 1.25 1.50

[3] P. Feraboli, B. Wade, F. Deleo, M. Rassaian, M. Higgins and A. Byar, "LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen," Composites: Part A, vol. 42, pp. 1809-1825, 2011.

6000

MAT54: CMH-17 Round II challenge

- Using the modeling strategy developed in Round I, the new Round II geometries could not be modeled with the material card as-is
 - No changes were made to the modeling strategy or material card
 - Note, initial predictions were made without experimental data, but experimental data is shown for scale

Using element-level data for model calibration

- With the experimental crush data of the Round II specimens, the material model was calibrated such that it simulated the experiment
 - SOFT was calibrated such that the average crushing load was captured
 - Trigger thickness was calibrated such that initial load peak was captured
- With these two calibrations, all specimens were successfully modeled

Element-level model calibration results

- Given element-level crush data, MAT54 can successfully be calibrated to simulate crushing failure
 - Recall that experimentally the energy absorption capability of a material can only be described at the element-level

Geometry	Trigger Thickness [in]	SOFT	Single Test SEA [J/g]	Numeric SEA [J/g]	Error
SC Sinusoid	0.044	0.580	88.98	89.08	0.1%
High Sinusoid	0.045	0.540	77.84	77.28	-0.7%
Low Sinusoid	0.040	0.450	75.01	74.13	-1.2%
Tube	0.015	0.145	34.55	34.99	1.3%
Large Channel	0.021	0.215	28.93	28.33	-2.1%
Small Channel	0.023	0.220	42.49	42.49	0.0%
Large Corner	0.022	0.205	33.71	33.43	-0.8%
Small Corner	0.030	0.310	62.11	62.44	0.5%

- As a result of this investigation, a linear trend was developed between the experimentally measured SEA and the calibrated MAT54 SOFT parameter
 - Given the known element-level SEA, an approximation for SOFT can be made
- A linear trend is also shown between SOFT and the trigger thickness reduction
 - SOFT does not apply to the initial row of elements; the trigger row is reduced in thickness to in effect apply the same strength knock-down as SOFT

Relevance within BBA

 The development, calibration, and validation of the MAT54 material model for crush simulation can be described within the context of the lower levels of the BBA

CMH-17 RR: G. Barnes (Engenuity)

- Abaqus Explicit model using a progressive damage material model with CZone, a failure criterion especially developed for crush modeling
- CZone use crush stress values measured from element-level crush tests to determine failure initiation, in addition to Tsai-Wu failure criterion
- Material damping and energy release rate also measured from coupon-level tests and input into material model
 - Energy release rate values used in post-failure damage model
- Single shell element approach

CMH-17 RR: A. Johnson (DLR)

- PAM-CRASH model using stacked shell elements to simulate lamina clusters with cohesive elements in between to allow for delamination modeling
- Damage mechanics material model which uses damage factors measured from coupon-level fatigue testing
- Maximum strain and maximum shear energy failure criteria
- Cohesive elements have an additional failure criterion defined using coupon-level G_{IC} and G_{IIC} tests which require coupon-level simulation calibrations
- Numerical trigger mechanism is calibrated using element-level test data such that the correct failure mechanism is triggered

CMH-17 RR: J.B. Mouillet (Altair Engineering)

- RADIOSS model which uses CRASURV orthotropic material law
 - Based on a visco-elastic-plastic, non-linear material
- Uses non-linear Tsai-Wu failure criterion for failure initiation
- Non-linearities following failure are modeled through "plastic work" variable, which simulates the diffusion of damage within the material
- Ultimate failure is determined by maximum plastic work and maximum tensile and residual strains
- Many input parameters require curve fitting against non-linear coupon-level data
- Test data for some parameters difficult to acquire, and is assumed
- Uses stacked shells

CMH-17 RR: M. Rassaian (BR&T)

- LS-DYNA simulation with MAT58 damage mechanics material model
- Failure criteria defined using maximum stress values from couponlevel tests
- Damage model includes residual stress factors which must be calibrated using element-level crush data
- Final failure is determined from maximum strain values measured from coupon-level tests
- SOFT parameter also available for MAT58
- Single shell element approach

Conclusion

- The Building Block Approach is applied to the development of a crash model for composite structures
- Experimental results have shown the need to characterize the energy absorbing capability of the material at the element-level
- Simulation results using LS-DYNA composite damage material model MAT54 have demonstrated its capability in the lower levels of the BBA, and promising utility at higher levels of the BBA
- Efforts of the CMH-17 Numerical RR have also demonstrated the need to use element-level test data to develop the material model specifically for crush simulation
 - i.e. material model cannot be defined simply from coupon-level data

Acknowledgments

- Dr. Larry Ilcewicz, Allan Abramowitz, Curt Davies
 Federal Aviation Administration
- Dr. Mostafa Rassaian
 Boeing Research & Technology
- Crashworthiness Working Group Round Robin participants

CMH-17 (former MIL-HDBK-17)

End of Presentation.

Thank you.

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE