

Load-Life-Damage Hybrid Approach for Substantiation of Composite Aircraft Structures

John Tomblin, *PhD* Waruna Seneviratne, *PhD*

Damage Tolerance Testing and Analysis Protocols for Full-Scale Composite Airframe Structures Under Repeated Loading

- Motivation and Key Issues
 - Produce a guideline FAA document, which demonstrates a "best practice" procedure for full-scale testing protocols for composite airframe structures *with examples*
- Objective
 - Demonstrate acceptable means of compliance for fatigue, damage tolerance and static strength substantiation of composite airframe structures
 - Evaluate existing analysis methods and building-block database needs as applied to practical problems crucial to composite airframe structural substantiation
 - Investigate realistic service damage scenarios and the inspection & repair procedures suitable for field practice

A Textron Comp

BOEING

FAA Sponsored Project Information

- National Institute for Aviation Research
 - John Tomblin, PhD (Executive Director)
 - Waruna Seneviratne, PhD (Research Scientist)
- Federal Aviation Administration
 - Curtis Davies
 - Program Manager (FAA William J. Hughes Technical Center, NJ)

('IRR

IphaSTAR

- Larry Ilcewicz, PhD
 - FAA Chief Scientific and Technical Advisor for Composite Materials (FAA/Seattle Aircraft Cert. Office)
- Peter Shyprykevich
 - Consultant (Ret. FAA)

Hawker Beechcraft

ADAM AIRCRAFT

AIRBUS

Liberty

Workshops for Composite Damage Tolerance & Maintenance

2009 FAA/CACRC/EASA – Tokyo, Japan

2008 AIRBUS - Toulouse, France

2008 CMH-17: Cocoa Beach, FL and Ottawa, Canada

2007 FAA/CACRC/EASA - Amsterdam, Netherlands

2006 FAA Workshop - Chicago, IL

The Joint Advanced Materials and Structures Center of Excellence

TORAY

Research Program Objectives

Primary Objective

Develop a probabilistic approach to synthesize life factor, load factor and damage in composites to *determine fatigue life of a damage tolerant aircraft*

Secondary Objectives

- Extend the current certification approach to explore extremely improbable high energy impact threats, i.e. damages that reduce residual strength of aircraft to limit load capability
 - Investigate realistic service damage scenarios
 - Inspection & repair procedures suitable for field practice
- Incorporating certain design changes into full-scale substantiation without the burden of additional time-consuming and costly tests

SCATTER ANALYSIS

Life Factor Approach Load-Enhancement Factor Approach Fatigue Analysis Application of Load-Life Enhancement Factors Test Data and Case Studies

- Increase applied loads in fatigue tests so that the same level of reliability can be achieved with a shorter test duration
 - Whitehead, et. al (NAVY/FAA research for F-18 certification)

The Joint Advanced Materials and Structures Center of Excellence

Fatigue Scatter Analysis Techniques

J

JMS Scatter Analayis Computer Code (SACC)

Scatter Analysis Computer Code				🛃 Calculation Summary				
File Edit Calculations Tools Help								
Experimental Data				Static Strength IW		Sendeckyj (without Static)		
AS4-1	Dataset Title	AS4-17						
AS4-2 AS4-3	Material System	Material System AS4/E7K9 DW		Static Strength IW		Sandeckyj (without Static)		
AS4.4	Laws Campaignee	AS4/E/ K8 PW		25/50/25			Generate Report	Runout 1000000
AS4-6	Layup Sequence	23/30/23						
AS4-7	Test Description	Compression After Impact -LID						
A34-0 AS4-9	Test Method	Modified ASTM	D7137	DataSet Name - AS4-1	E . W. E . I	✓ [A1 + A3]/2 < A2		
AS4-10	Test Environment	RTA		No of Specs - 6	Export to Excel	U NUNE		
A54-11 AS4-12	R Ratio	5		Alpha - 26.9333 Beta - 41.204.9679		DataSet Name -AS4-1		
AS4-13		Ľ				No of SLs - 4		
AS4-14 AS4-15	Stress	Num of	Risidual	DataSet Name - AS4-2		Alpha (s) - 2.6049 Alpha - 30 1144		
AS4-16	25147	1	Strength	Alpha - 26.9333		S - 0.0865		
A54-17	25601	1		Beta - 41,204.9679		C - 0.8513		
	24627	1						
	25370	1						
	25228	1		Fatigue Data IW	Fatigue Data JW	Sendeckyj (with Static)		
	26695	1						
	19083	42897						
	19083	38476		Fatigue Strength IW	Fatigue Strength IW	Sandeckyj (with Static)		
	19083	18155		Min Num of Specs per SL 5 📚	Min Num of Specs per SL 3 📚	Runout 1000000		
	19083	13719			Runout 1000000	A1 \ A2 \ A2		
	19083	32463				■ AT 2 B2 2 B3 ■ (A1 + A2)/2 < A2		
	19083	17564		DataSet Name - AS4-1	DataSet Name - AS4-1			
	16539	201380	×	Stress Level - 30354	No of SLs - 4	NONE		
				No of Specs - 1	Aupina - 2.0101	DataSet Name -AS4-1		
Summany Calculation	Clea	ar Remove	Add	Beta - 0.0000	DataSet Name - AS4-2 No of SLs - 5	No of SLs - 4 Alpha (s)- 1.7186		
Summary Calcuidtion	Datas	set Dataset	Dataset	Stress Level - 26307	Alpha - 3.2315	Alpha - 23.0671 S - 0.0745		
				No of Specs - 8	DataSet Name - AS4-3	C - 0.5331		

JMS 2nd Generation Weibull Shape Parameters

Estimation

10.0

								Static Scatter Factor Fatigue Scatter Eactor	20.000	26.310 2.131	Maxim
								NF	13.558	4.259	1
			●Sendeckyj (w/static)	€Sendeckyj (w/o static)	Individual Weibull (w/o static)	€JointWeibull (w/ostatic)		thef Lives (N)	NAVO		-
Pooled - Composite	MLE	ć	3.342	1.826	1.8255	1.910		<u>+ 01 Lives (N)</u>	1 177	1 125	-
		ť	2.408	3.291	4.6023	3.435		1.00	1.177	1.123	
		€ ‡nodal	2.165	2.131	2.980	2.330		2.00	1.140	1.000	
	RRX	ć	3.900	2.674	2.8007	2.896		2.00	1.127	1.063	
		Ć	2.371	3.150	4.3619	3.280		2.50	1.111	1.044	
		🛋 Modal	2.198	2.644	3.725	2.834		3.00	1.099	1.029	
	RRY	Ć	3.656	2.320	2.2853	2.452		3.50	1.088	1.016	
		Ć	2.394	3.251	4.5609	3.396		4.00	1.079	1.005	
		🛋 🖬 odal	2.193	2.550	3.546	2.743		4.25	1.075	1.000	
								4.50	1.071		
								5.00	1.064		
oled - Composite+Adhesive	MLE	Ć	2.070	1.698	1.5651	1.647		6.00	1.052		
		Ć	1.968	2.917	3.7258	2.822		7.00	1.042		
		€ ‡∦odal	1.430	1.729	1.943	1.600		8 00	1.034		
	RRX	Ć	2.000	2.206	2.1304	2.221		9.00	1.026		
			1.961	2.826	3.5564	2.708		13.60	1.020		
		€ ‡/lodal	1.387	2.150	2.641	2.069		15.00	1.000		
	RRY	G	1.951	2.063	1.8875	1.991					-
200 1		•	1.9/5	2.876	3.6/86	2.788	1 40 +				
		■ Modal	1.300	2.086	2.466	1.964					
175		-NAVY							N	AVY	
									N	IAR	
1 11 1		AS4/E7K8-C+	A					\mathbf{i}	—— A	S4 ~ Individual (C	;)
¹⁵⁰		T700/#2510- 0	;				1.30		A	S4 ~ Individual (C	;+A)
	_	T700/#2510-0	C+A						— A	S4 ~ Sendeckyj (C)
125		7781/#2510 - 0	;					the test of the second	— A	S4 ~ Sendeckyj (C+A)
			C+A						— A	S4 ~ Sendeckyj (C)+Individu
100							E1 20				
							E ^{1.20}				
: N. ``									ana an		
075									-		
1											
050							1.10				
									li'i.		
											+ 10.
											\checkmark
									· · · · · ·		
000						•	1.00				

JMS

Application of LEF/N_F

Hybrid Structural Substantiation

Metals:

severe flight loads result in crack-growth retardation

Composites:

severe flight loads significantly contribute to flaw growth in composite structures and reduce the fatigue life

LOAD-LIFE DAMAGE (HYBRID) CERTIFICATION APPROACH

Damage Tolerance Element Testing Enhanced Durability & Damage Tolerance Test Substantiation Approach Load-Life Shift Concept

JMS Damage-Tolerance Element Tests

- Scatter analysis or flaw growth threshold
- Scaling
 - Primary load path (LC)
 - Load redistribution (SC)
- Flaw-growth measurements
 - Compliance change
 - Stable or critical growth
- Loading mode
 - Stress ratio

Load-Life Shift

• Example calculation of desired Test Duration:

No Damage	(LEF=1.033)	LID (LEF	Total		
Desired	Test	Desired	Test	IUtal	
3.0	2.0	2.5	0.8	2.8	

$$N_2^T = \left(1 - \frac{N_1^T}{N_1^R}\right) \cdot N_2^R$$

Load-Life Shift

The Joint Advanced Materials and Structures Center of Excellence

JMS CAT2 – Aft Spar (FWS 45)

JMS CAT3 – Front Spar (FWS 65)

JMS CAT 2 Residual Strength

Damage progression along aft spar (top skin) of ST004 (CAT2 damage) during residual strength test after 2-DLT cyclic test with LEF Large Damage growth across CAT impact damage occur just pass ultimate load (NRUL)

J **CAT 3 Residual Strength**

Load (lbf)

nd Structures Center of Excellence

CUMULATIVE FATIGUE UNRELIABILITY MODEL

Residual Strength Degradation Inspection Intervals Full-Scale Test Validation

The Joint Advanced Materials and Structures Center of Excellence

22

Residual Strength Degradation

• Sendeckyj Wearout Model:

 $\sigma_r = \sigma_a \left[\left(\frac{\sigma_e}{\sigma_a} \right)^{\frac{1}{s}} - C(n_f - 1) \right]^s$

Linear Loss of Residual Strength:

Stress (psi)

Number of Cycles

The Joint Advanced Materials and Structures Center of Excellence

Health Monitoring & Damage CECAM J **Evolution** MTAS UCTURE FWS (in) 8000 ۲ æ 40 50 60 0 10 20 30 70 80 90 100 (F7) 0 RE +NRLL -500 R8 AP R7 (R4) AA 414 **—** 50.0% ain) 6000 -1000 **—=** 60.0% ROSETTE S **—**70.0% crosti -1500 A٦ -75.0% AS Ē R3 -2000 ---- 85.0% 5 Strai -2500 92.0% 4000 Axial **—** 95.5% -3000 Load Redistribution -3500 -4000 2000 Leading edge 0 10 20 30 40 50 60 70 80 90 100 buckling ſ +NRLL microstrain -200 **—** 50.0% Axial Strain (microstrain) 0 **—=** 60.0% 2000 4000 6000 8000 10000 12000 14000 🦼 16000 -400 - 75.0% -600 ---- 85.0% ----- 90.0% -2000 - 92.0% -800 **___** 94.0% **→** 95.5% -1000 **Damage Propagation** -1200 - 100% -4000 125% 4000 150% - 175% rain) 3000 -200% - A1 - A2 **Skin delamination** - 225% - A3 - A4 2000 - 241% along aft spar (starting A5 —— A6 -6000 rain 1000 - A7 – A8 from root -A4, A5, and Axial Str A12 A7) 120 140 -1000 -8000 -2000

Structures cente

FWS (in)

Load (lbf)

JMS CAT3 – Front Spar (FWS 65)

ST005 Static

• ST006 DaDT

The Joint Advanced Materials and

JMS CAT3 DaDT – ST006

CAT3

Load

Incorporation of damage into scatter analysis

- Investigate large VID damage
- Scaling
- Detectability
- Load-Life Shift
 - Investigate different categories of damages/repairs in the same full-scale test article Skin damage delamination

– Summary –

- Design change substantiation, i.e. gross weight increase
- LEF during certification vs. improved LEF
- Life extension or determination of retirement life
- **Damage Threats and Inspections**
 - Probability of threats/occurrences
 - Probability of detectability

- Mitigate risks of unintentional failure
 - Inspection intervals using CFU model (cost and reliabili
 - Strategic placement of health monitoring equipments
 - Progressive damage analysis (NLFEA) or scaled component tests

Skin delami

- Benefit to Aviation
 - Guidelines on developing LEF and application
 - Database of shape parameter for currently-used composites
 - Enhanced certification approach (economical and time saving) that allows investigating the effects of extremely-improbable high-energy impact threats
 - Incorporating certain design changes into full-scale substantiation without the burden of additional time-consuming and costly tests
- Future needs
 - Develop cumulative fatigue unreliability (CFU) model for field inspections
 - Model development for damage analysis of composites