

Development and Evaluation of Fracture Mechanics Test Methods for Sandwich Composites

2012 Technical Review Dan Adams, Joe Nelson, Zack Bluth University of Utah

FAA Sponsored Project Information

- Principal Investigator: Dr. Dan Adams
- Graduate Student Researchers:

Joe Nelson	Zack Bluth
Josh Bluth	Brad Kuramoto
Chris Weaver	Andy Gill

- FAA Technical Monitors
 - David Westlund & Curt Davies
- Collaborators:
 - NASA Langley Airbus Learjet

NIAR Boeing Goodrich

Fracture Mechanics Test Methods for Sandwich Composites

- Fracture mechanics test methods for composites have reached a high level of maturity
- Less attention to sandwich composites
 - Focus on particular sandwich materials
 - Focus on environmental effects
 - No consensus on a suitable test configuration or specimen geometry for Mode I or Mode II fracture toughness testing

RESEARCH OBJECTIVES:

Fracture Mechanics Test Methods for Sandwich Composites

- Focus on facesheet-core delamination
- Mode I and Mode II
 - Identification and initial assessment of candidate test methodologies
 - Selection and optimization of best suited Mode I and Mode II test methods
 - Development of draft ASTM standards

Mode I

Mode II

SELECTED MODE I CONFIGURATION:

Single Cantilever Beam (SCB)

- Elimination of bending of sandwich specimen
- Minimal Mode II component
- No significant bending stresses in core
- No crack "kinking" observed
- Appears to be suitable for a standard test method

PARAMETERS INVESTIGATED:

Single Cantilever Beam (SCB) Test

Specimen geometry

- Length
- Width
- Initial delamination length

Facesheet properties

- Thickness
- Flexural stiffness
- Flexural strength

Core properties

- Thickness
- Density
- Stiffness
- Strength

ירותית התיתות היותי היותי היותי היותי אורי איי

RECENT EFFORTS:

Single Cantilever Beam Test for Sandwich Composites

- Establishment of recommended specimen width
 - Anticlastic curvature and curved crack fronts
 - Minimum number of honeycomb cells
- Effects of thru-thickness placement of starter crack
- Procedures for testing sandwich configurations with "thin" facesheets
 - Excessive facesheet rotation
 - Problems with using compliance calibration method
 - Use of doublers

RECOMMENDED SPECIMEN WIDTH:

Anticlastic Curvature and Curved Crack Fronts

Foam Core Sandwich Specimens with Quasi-Isotropic Facesheets

UNIVERSITY of UTAH

RECOMMENDED SPECIMEN WIDTH:

Minimum Number of Honeycomb Cells

Nomex Honeycomb Core, 51 mm (2 in.) Wide Specimens

Recommend a minimum of 6 honeycomb cells across specimen width

- Most honeycomb cores will have at least 6 cells across 2 in. width
- Width can be increased for larger-celled honeycomb cores

SCB FACESHEET THICKNESS EFFECTS:

Thin Facesheets

Thin facesheets create inaccuracies when using conventional compliance calibration method

$$C_{\text{SCB}} = \frac{\delta}{P} = \frac{4\lambda}{k} \left[\frac{\lambda^2 a^3}{3} + \lambda^2 a^2 F_1 + \lambda a F_2 + \frac{3ak}{10\lambda G_{xz,f} t_f b} + \frac{F_3}{2} \right]$$

Ratcliffe J. and Reeder, J., "Sizing A Single Cantilever Beam Specimen for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure," *Journal of Composite Materials*, Vol. 45 no. 25 2669-2684, 2011

SCB FACESHEET THICKNESS EFFECTS:

Adding Tabbing "Doublers" to Thin Facesheets

Geometrically nonlinear FE simulation of compliance calibration method

Adding tabbing doublers to upper facesheet predicted to increase accuracy of G_{IC} calculation

USE OF FACESHEET DOUBLER:

Preliminary Test Results

Different crack locations:

- <u>Thick-tabbed:</u> crack growth in core at the base of adhesive fillets
- <u>Thin-tabbed:</u> crack growth in in vicinity of adhesive/core interface
- <u>Untabbed</u>: crack growth in film adhesive

EFFECTS OF FACESHEET DOUBLER:

Different failure locations produces different G_e values

NUMERICAL INVESTIGATION

Effects of Facesheet Doubler

- Load applied in each model to produce same G_T value
 - No doubler, "thin" doubler, "thick" doubler
- Consider crack growth at three throughthe-thickness locations
- Investigate mode mixity (% G_I)
- Investigate orientation of max. principal stress for expected crack growth direction

FACESHEET DOUBLER EFFECTS:

No Doubler

Crack at interface

FACESHEET DOUBLER EFFECTS:

Thin Doubler

FACESHEET DOUBLER EFFECTS:

MODE II TEST METHOD DEVELOPMENT

Challenges in Developing a Suitable Mode II Test

- Maintaining Mode II dominated crack growth with increasing crack lengths
- Obtaining crack opening during loading
- Obtaining stable crack growth along facesheet/core interface

Mixed Mode Bend (MMB) Configuration

18

SELECTED MODE II CONFIGURATION:

End Notched Sandwich (ENS) TEST

- Modified three-point flexure fixture
- High percentage Mode II (>80%) for all materials investigated
- Semi-stable crack growth along facesheet/core interface
- Appears to be suitable for a standard Mode II test method

MODE II END NOTCHED SANDWICH TEST

Numerical Investigations Performed

- Mode mixity of crack growth (% G_{II})
- Specimen width effects
- Facesheet thickness effects
 - Adding doubler to lower facesheet
- Crack growth stability
 - Specimen length effects
 - Precrack length effects

Addressing Mode Mixity/Width Variations

Adding Flexural Stiffness to Bottom Facesheet

Increasing flexural stiffness (EI) of lower portion of delaminated specimen reduces specimen width effect

ADDRESSING CRACK GROWTH STABILITY:

Specimen Span Length and Precrack Length

- Selection of proper precrack length/span length expected to produce stable crack growth
- Experimental results have shown this effect

Required Displacement for Crack Growth

TOWARDS STANDARDIZATION...

Presentation and discussion at ASTM Committee D30 on **Composites every six months**

Next presentation: April 18, 2012 in Phoenix, AZ ٠

Overview presentations at CMH-17 Testing Working Group

Next presentation: August 22, 2012 (Location TBD) ullet

Performing SCB testing at the University of Utah for interested parties

Benefits to Aviation

- Standardized fracture mechanics test methods for sandwich composites
 - Mode I fracture toughness, G_{IC}
 - Mode II fracture toughness, G_{IIC}
- Test results used to predict delamination growth in composite sandwich structures

Thank you for your attention!

Questions?

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

