

DEVELOPMENT AND EVALUATION OF FRACTURE MECHANICS TEST METHODS FOR SANDWICH COMPOSITES

Jeff Kessler

Dan Adams

Department of Mechanical Engineering University of Utah

Salt Lake City, UT

- Principal Investigator: Dr. Dan Adams
- Graduate Student Researchers:

 Joe Nelson
 Josh Bluth
 Chris Weaver
- FAA Technical Monitor

 Curt Davies

BACKGROUND: FRACTURE MECHANICS TEST METHODS FOR SANDICH COMPOSITES

- Fracture mechanics test methods for composites have reached a high level of maturity
- Less attention to sandwich composites
 - Focus on particular sandwich materials
 - Focus on environmental effects
 - No consensus on a suitable test configuration or specimen geometry for Mode I or Mode II fracture toughness testing

Develop fracture mechanics test methods for sandwich composites

- Focus on facesheet core delamination
- Both Mode I and Mode II
- Suitable for ASTM standardization

- PHASE I: Identification and initial
 assessment of candidate test methodologies
- PHASE II: Selection and optimization of best suited Mode I and Mode II test methods
- PHASE III: Identification of acceptable ranges and development of draft ASTM standards

JMS

SELECTED MODE I CONFIGURATION: PLATE-SUPPORTED SINGLE CANTILEVER BEAM (SCB)

CECAN

- Minimal Mode II component (less than 5%)
- No significant bending stresses in core
- Applied Load Piano Hinge Crack Tip Plate Support

- No crack "kinking" observed
- Appears to be suitable for a standard test method

JMS DEVELOPMENT OF TEST FIXTURING: MODE I TESTING

Single Cantilever Beam (SCB) Test

- Ability to test 1 in. to 3 in. wide sandwich specimens
- Edge clamp restraints at base eliminates adhesive bonding
- Translating fixture base maintains vertical loading

TEST METHOD ASSESSMENT: ANALYSIS AND TESTING

- Determination of Acceptable Ranges of Specimen Parameters
 - Facesheet parameters
 - Thickness, flexural stiffness, flexural strength
 - Core parameters
 - Thickness, density, stiffness, strength
 - Specimen length and width, initial delamination length
- Use of four different core materials
 - Nomex honeycomb
 - Aluminum honeycomb
 - Polyurethane foam
 - End-grain balsawood
- Carbon/epoxy facesheets (woven fabric and prepreg)

The Joint Advanced Materials and Structures Center of Excellence

JMSEXAMPLE MODE I RESULTS:NOMEX HONEYCOMB CORE SANDWICHCE

- Stable delamination propagation
- No apparent effect of facesheet thickness on G_c

Typical Load vs. Deflection (6ply)

A Center of Excellen

JMS EXAMPLE MODE I RESULTS: POLYURETHANE FOAM CORE SANDWICH CECAM

- Semi-stable delamination propagation
- No apparent effect of facesheet thickness on G_c

- Crack front lagging on the free edges due to anticlastic bending of facesheet
- Anticlastic bending highly dependent on v₁₂ of facesheets

Symmetry BC

Interlaminar normal stress at surface of core (Mode I stress)

- Testing using 1 in., 2 in., and 3 in. wide specimens
- Crack front during crack growth established using dye penetrant
- Three core materials investigated

Crack front established using dye penetrant

- Increase facesheet bending stiffness, El
 - Thicker facesheet Addition of doubler (tabbing material)
- Reduce v₁₂ of facesheet
- Increase specimen width

- Maintaining Mode II dominated crack growth with increasing crack lengths
- Obtaining crack opening during loading
- Obtaining stable crack growth along facesheet/core interface

Mixed Mode Bend (MMB) Configuration

SELECTED MODE II CONFIGURATION: END NOTCHED SHEAR (ENS)

- Modified three-point flexure fixture
- High percentage Mode II
 (>80%) for all materials
 investigated
- Semi-stable crack growth along facesheet/core interface
- Appears to be suitable for a standard Mode II test method

Semi-stable delamination propagation

Mode II Test Results: Aluminum Honeycomb Core

JMS

Core failure in aluminum honeycomb prior to delamination growth

JMS CURRENT FOCUS: FRACTURE MECHANICS TEST METHODS Advanced Mate

- Determination of Acceptable Ranges of Sandwich Configurations
 - Facesheet parameters
 - Thickness, flexural stiffness, flexural strength
 - Core parameters
 - Thickness, stiffness, strength
 - Specimen and delamination geometry

A LOOK FORWARD

Benefit to Aviation

- Standardized fracture mechanics test methods for sandwich composites
 - Mode I fracture toughness, G_{IC}
 - Mode II fracture toughness, G_{IIC}
- Ability to predict delamination growth in composite sandwich structures

