JAWGS

JOINT ADVANCED MATERIALS & STRUCTURES
CENTER OF EXCELLENCI

Impact Damage
Formation on Composite

Aircraft Structures
Hyonny Kim,

Professor, Dept. Structural Engineering
University of California San Diego

JAMS 2018 Technical Review
May 23-24, 2018

Long Beach, CA




Impact Damage Formation on Composite Aircraft Structures

* Principal Investigators & Researchers
— PI. Prof. Hyonny Kim, Professor, UC San Diego
— Graduate Students

» PhD: Konstantinos Anagnostopoulos, Moonhee Nam, Chaiane
Wiggers de Souza
= MS: none

e FAA Technical Monitor
— Lynn Pham

e Other FAA Personnel Involved
— Larry licewicz , Ahmet Oztekin

* Industry Participation
— Boeing, Bombardier, UAL, Delta, DuPont, JC Halpin Consulting

A Center of Excelence
Jm Advanced Materials in
Transport Aircraft Structures
JOINT ADVANCED MATERIALS & STRUCTURES
CENTER OF EXCELLENCE



Impact Damage Formation on Composite Aic

. . *["Ice ImpactonjSandwich
* Motivation and Key Issues 7—9,‘,/”7

. [\, ~ Panel
e impacts are ongoing and major source of damage Sl N B
 high energy blunt impact damage (BID) of main interest ' =

* involves large contact area
e damage created can exist with little/no exterior visibility

 Sources of Interest: those acting over wide area and/or across

multiple structural elements 'I q
» ground service equipment (GSE) with rubber bumpers . '! u 14

e railings, blunt/round corners, FOD of unknown geometry
e hail ice, bird

» core crush with low/non-
visible dent

* low velocity: GSE, tools

* high velocity: ice, bird
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Program Objectives

e Understand blunt impact damage formation and visual detectability

« determine key phenomena and parameters controlling both internal and
external/visual damage formation

* internal vs. external damage formation vs. bluntness/contact-area size
* identify and predict failure thresholds (useful for design)

 Develop analysis and testing methodologies, including:
o full structure vs. sub-structure testing for HEWABI investigations
e accurate modeling capabilities and tools validation
o establish damage visibility criteria — surface crack, residual dent
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Outline

« Ground Service Equipment (GSE)
High Energy Blunt Impact
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Next-Generation Specimen Blunt Impact Tests

Focus: Failure Near Floor Joint
Full

Frame-to-

Floor
s\\ Quarter Stiffness
&/ Interaction

|
k\\ Barrel 8" deep beam
%

Truncated
1 Frame
Specimen

Key Features:

evised skin &
ihger geom

Continuous Shear
Tie Assembled to
Frame

floor stiffness
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continuous shear <

A enterof Excellence
Advanced Materials in
Transport Aircraft Structures 6
JOINT ADVANCED MATERIALS & STRUCTURES
CENTER OF EXCELLENCE




New Specimen Design & Test Matrlx

Skin [0W/0/45/90/-45/0/90]s
Stringer  [0w/0/45/90/-45/0/90]s

= [45/0/-45/45/0/-45]s (web)
"FTame  [45/0/0/-45/45/0/0/-45]s (flange)

Shear tie  [45/0/-45/0/45/0/-45/0]s

mm

1 14 plies
2 14 plies
3 14 plies
4 14 plies

2.79
2.79
2.79
2.79

16 plies
16 plies
16 plies
16 plies

3.53
3.53
3.53
3.53

Quasi-Static
3 0.25 m/s
4 Quasi-Static
4 0.25 m/s

Load Speed “Quasi-Static” = slow speed until just past initial failure; stop & inspect; reload, stop etc.

Load Speed “0.25 m/s” = single load step until well past initial failure.
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Test Setup

1D Table
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Truncated vs. Full 4 Barrel Equivalency?
Assess via Finite Element Analysis

Fixed Beam

\

Fixed Beam

Fixed Beam

\

Full model Truncated model

A Centr of Excellence
Advanced Materials in
Transport Aircraft Structures
JOINT ADV STRUCTURES
CE




Loading Location 3 Response

Force-Displacement Loc3
16

Shear Tie
Failure - e=F(|-lo3-Ehdiclnpltt
14 e
Initiation:
1D em=Trnatad-La 3Elstc-mdidt
e e»l (] |-loc3-Has hh-Explat
10

em=Trinatad-La 3Hashn-Explct

60 ==,

40 Stringer
Shear Tie - Failure

20 Stringer Initiation:
Contact 53.4 kN

0
0 5 10 15 A 5
Displacement (mm) No Skin Failure

Predicted
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Loading Location 4 Response

Force-Displacement Loc4 = e=Fll-loct-Ebgicimplct

140 e Trincata-La4Elste-
Shear Tie Implct . _
0 Failure e e[ ||-locd-Has hn-Expldt
Initiation: ’,’ e=m=Trnated-Lac4Hashin-
22.7 kN ,/ Explct
10 P 4
P4 . .
’/ Stringer Failure
g 30 ’, Initiation: 50.3 kN
S (4
z”
£ 60
- T oy
40 ot ~ S
20 Shear Tie - - .
Stringer C .F_rarne Failure
Initiation: 50.3 kN
0 Contact
0 5 15 A 5 D
Displacement (mm)
No Skin Failure
Predicted
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Panel Edge BC Consideration

Consider the edge BC on panel long side
In FEA, U3 = 0 for symmetry condition

U3 = 0 difficult to replicate in the laboratory
environment

Account for friction between rubber bumper and skin
Friction coefficient range: 0.3 to 0.6

Max U3
displ.:
0.087”




Panel Edge BC Comparison: U3 = 0 or Free

Loading Loc. 4, Friction Coefficient 0.3

Force-Displacement Comparison - Loc.4
70

Stringer hat radius
element deletion initiation

by contact

Shear tie web element
deletion initiation by

contact

\/ \

Shear tie corner
60 radius element

deletion
initiation

Shear tie web to
50 stringer hat contact

40 Stringer Failure

wrtion |
i

»

30

Reaction Force (kN)

20

Shear Tie Failure
I Ilni:.r' tion

0 2 4 6 8 10 12 14 16 18 20 22 24
Displacement (mm)

e\ oS de BC _Frition0.3
10

@ea» U30SdeBCFicton0 3

MT: Matrix tension FC: Fiber compression

MC: Matrix compression FT: Fiber tension
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EIement-Level C-Frame Experiments
3ending. Bending-Torsion 4//(*

Load Celr:

AL Extension,
Armp

e B
sC-Frame_ &
J_Element A °t 2} :

Specimentiins

* C-frame test specimen
= short section w/ extension arm

 Fixed end boundary condition
» Loaded end:

= 2 point connection - bending
= 1 point = bending + torsion




FE Modeling: Element-Level Validation

» Materials : —| bf=38.10 |—
« Cytec X840/Z260 6k woven carbon/epoxy with | |
Hill failure Criterion 1T ] Frame section
- Failure criterion for woven composites (Unit: mm)
- Examination of transverse shear effect
* Aluminum 6061-T6 (box beam)
* Element type d=108.00 tw=2.50 —=
« C-frame: Solid (C3D8R) — layer by layer Web layup:
modeling [45,0,-45,90,45,0]s
* Aluminum: Solid (C3D8R)
« Abaqus/Explicit solver .

15

JOINT ADVANCED MATERIALS & STRUCTURES [45,0'01'45.90,45.018




Bending A2 Model: Hill Failure Criterion
Load - Displacement Curve

Load vs. Displacement L 10°
T ¥ 1 T 1 1 T 1 1
11000 1 6.0071
10000 | TestA1 | TestA2 |Model A2] . ..
Fai
Load
o000 | 7011 6856 11164 laoten
(N)
8000 {4.3688
7000 | 3.8227
3
> 6000 {3.2766
3
= 5000 - 2.7305
4000 - {2.1844
3000 - {1.6383
aaad | ———Bending Test A1| 10922
- Bending Test A2
1000 FE Solid A2 10.5461
1 - = = Hand-Calc.
o A 1 | A 1 | A 1 0
0 2 4 6 8 10 12 14 16 18 20

16 Displacement at Pot2 (mm)

Bending Moment (N-mm)



Stretching

Bending Test A2 - Back to Back Strain on Bottom Flange vs. Load
Load (N)
0 1000 2000 3000 4000 S000 6000 7000 8000 9000 10000 11000

[~ T T 14 Y Y T T )

Buckling

|« LExx-outside near fixed-end

L LExx-inside near fixed-end
LExx-outside at mid-span
LExx-inside at mid-span

+10000 - | = = = Hand-Calc.-outside at mid-span
11000 - TEST-outside near fixed-end
TEST-inside near fixed-end
12000 | TEST-outside at mid-span
~13000 - | —~ — ~TEST-inside at mid-span

Micro-strain
§ggs88¢88¢
g 8 g 8.

e . e ' s :
0 0.5461 10922 1.6383 21844 27305 312766 18227 43688 49149
Bending Moment (N-mm)

* Buckling mode from the measured strain
curve on the compression flange. ’

o

 FE-predicted strain curve qualitatively agrees o)

with the test resulit.

1 ‘
17 ' [ i |
ewengzd Near Fixed-End Mid-Span




Bending A2 Model — 3D Hill Failure Criterion

LEMeodel Faluremeode

« Compression flange fractures at midspan

« Doesn’t match with experiment location — slip and clamping effects need to be accounted for

DEG
Avg: 759%)
+9.465e-01
+8.677e-01
+7.888e-01
.099e-01
& -01

Max: +9,4652-001

Max: +9.465e-01
Elern: CFRAME_A2-1,.6623
Node: 243

Min: +0.000e+00
Elern: CFRAME_A2-1,16382
Node: 6055

Failure
location in

test

Max: +9.465e-001

ODB: 180206_wedge_MSFS-TipBC2.0db  Abaqus/Explicit 6.13-2 Mon Feb 05 21:10:54 Pacific ODB: 180206_wedge_MSFS8-TipBC2.0db  AbagusiExplicit 6.13-2 Mon

Step: Step-1 Step: Step-1
vlrf/er'nent 2361697 Step Time = 0,9300 | __ ~ Increment 2361697: Step Time = 0.9300
- | | — . pdmary Var: SDEG




Refinement: Slip and Clamping Effects

> Including slip in FE analysis
- Need model refinementto account for fixture to specimen interaction

(slip was observed in real tests).

Friction contact formulation is applied in detached adhesive zone
between aluminum tab and c-frame.

Clamping effect is considered with 3D Hill criterion.

h st H .
Same failure LR ETIR

location , Hypothetical wedge pressure

and friction coefficient applied




Outline

» |Impact Damage to Sandwich Panels
& Core Crush Mechanics
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Introduction

- Complex Nomex® core mesostructure (p = 64 kg/m3) affects core crush
response

i Double
W-direction side view P e Cell Wall

[l - E-N

Goals:
o Determination of core damage extent under impact loads

o Focus on cellular core fracture mechanisms
o Employ image processing techniques to quantify core geometry imperfections
o Simulation of flatwise compression tests to include key features and manufacturing
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Example: Hail Impact on Low Glancing Angle Panels

*10° glancing angle, 80 - 160 m/s velocity; 275 - 590 J kinetic energy, 4-ply PW
0.2

—@— Input kinetic energy = 275 J
—A— Input kinetic energy = 590 J
[ [

Residual dent (mm)

-200 -150 -100 -50 0 50 100 150 200
Position x (mm)

t = 1.332 ms from trigger

High speed video
from 590J impact

(velocity: 360 mph)

t =1.665 ms from trigger

ot U U] L
Sths

G G BOY ARY)-F
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Damage on Nomex® Cores (FIatW|se Compressmn)
—~ 4, . : . . ‘ -

Unloading at peak stress (point #1):
MTSCCB23, 1 Full Cycle || Onset of resin fillet disbonding from cell wall

N R s MTSCCB24, 2 FullCycles || . Strength is recoverable upon re-loading
0 1 2 3 4 - Dz :
Normalized Out-of-Plane Core Displacement (%)

Out-of-plane Effective Stress (MPa

Sequence of failure events

Unloading at unstable region (point #2):
- Fractured fillet leading to local cell collapse

A Onset of B Onset of C): Core crushin .
( ) (B): ( ) | 9 . Strength and stiffness not recoverable
post-buckling resin fracture plateau
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Computed Tomography Scans for Initial Damage Level
in Flatwise Compression Coupons

- Collaboration with University of Utah: CT-scans provided by Prof. M. Czabaj
- Through thickness scans provide clear description of damage

- Fillet fracture and detachment from paper walls are the prevailing modes (right figure)

Cross-sectional slice #302 of tested coupon

Concentra-
ted damage
at filleted
zones




Imperfect Core Geometry Effects
FE Model construction from CT Images

Automated | flized in Matial

1) Image processing of each slice to
obtain pixels representative of the

shape of the cellular structure
- Pixels at triangular fillets
- Pixels at cell walls

2) Repeat steps 1 at different through-
thickness CT-slices

3) B-spline surfaces fitted through B-Spline Curve Fit
- - - 15 -
data pixels obtained in steps 1) and 2) o GonvolPos )
. Characterize imperfection metrics 10} e
of pre-buckled walls B-spline (p=4)

- Perform collapse/post-buckling
computational analysis on actual

geometry honeycomb structure

Y-coordinate
()]

04




Extract cell interpolated pixels from CT-scan slices

1) Get corner pixels of triangular-shaped 2) Get pixels of cell wall structure using
fillets using threshold color segmentation matrix color segmentation

Double
wall

Single
wall

Shared
nodes
between
fillet zones
and
intersecting
boundaries
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Application of B-spline curves (one CT-slice)

3) Use B-spline curve fit to extract planar honeycomb geometry

- Obtain the spline of each paper ribbon (as in expansion process)

- B-splines at double wall region match perfectly between adjacent layers

Finite fillet
angles

\/

Only C°
continuity at

intersecting
boundaries




3D Core Reconstruction & Imperfection Metrics

Extend into many slices and reconstruct 3D geometry based B-spline surfaces

Cross-section A-A (Single wall section)

25
28 E ol Distorted
26 + £ Cell Wall
2 Geom
24 + 215
S - Pre-
! o Buckled
gzo » N
2 5 1 1 L_l L 1 1
® 18 0 5 10 15 20 25 30 35
© Y-coordinate (mm)
s 16}
>8_ 14 Exact 3D Actual Geom FE Model
12} \\
10 |
8 o

Transport Aircraft Structures
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Outline

« Summary, Benefits to Aviation, and
Future Work
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Summary
Ground Service Equipment (GSE) High Energy Blunt Impact

Next Generation HEWABI specimen design completed and parts fabricated
— focus on blunt impact tests near floor beam locations

Simulations of blunt impacts near floor beam completed
— predict sequence of failure modes; no skin failure

— truncated specimen geometry shows equivalence to full quarter barrel

Element-level C-frame FE models developed for bending and torsion
— to be incorporated into large panel blunt impact models

Impact Damage to Sandwich Panels

Core damage has been experimentally documented via ice sphere impact gas
gun tests at low angles of attack; no dent visible with core crush/fracture.

For Nomex® paper based cores, phenolic resin pre-impregnated paper cells
exhibit mesoscale structural complexity
» Phenolic resin accumulation zones around wall intersection boundaries significantly
improve stability of system during flatwise compression tests
« (CT-scans on post-tested compression coupons revealed partial detachment of fillet
columns due to cell wall post-buckling

CT-scans on untested configuration provides insight on actual in-situ geometric
imperfection state of Nomex® core in sandwich
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Benefits to Aviation

 Understanding the damage resulting from HEWABI through element level and
structural level studies — particularly for impacts near floor beams

— key phenomena awareness and possible internal damage modes can be predicted
— guides inspection strategies and location definition

— permits more accurate model representation, could influence design

Improved FE modeling methodology and validation for blunt impact damage.

Demonstrate techniques for effective boundary conditions definition for smaller
sub-structure specimens to represent larger full structure.

Establish relationship between core features vs crushing and fracture

resin fillet columns
resin thickness coating cell walls
geometric imperfection of walls

* more accurate modeling representation of core

Understand effects of manufacturing defects/variability on core mechanics — FE
model generation by CT-scan permits accurate actual geometry definition
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Looking Forward

Complete HEWABI specimen machining, drilling, assembly

Test HEWABI specimens

Continued development of high fidelity FEA modeling capability — validated
at element level.

In large-scale FE models, define effective representation of fasteners and
its influence in damage initiation and progression.

Simulation of core crush response with actual geometry defined by CT
scans.
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