

Development of a Building Block Approach for Crashworthiness Testing of Composites

Dan Adams University of Utah

FAA JAMS 2018 Technical Review May 24, 2018

FAA Sponsored Project Information

- Principal Investigators:
 Dr. Dan Adams
- Graduate Student Researchers: Mark Perl Dalton Ostler Michael Terry
- FAA Technical Monitor:
 Allan Abramowitz
- Collaborators: Boeing: Mostafa Rassaian, Kevin Davis Engenuity, LTD: Graham Barnes Hexcel: Audrey Medford

Overview:

CMH-17 Crashworthiness Working Group

- Founded in 2005
- Original focus on automotive composites
- Current focus on aviation applications
- Testing, Analysis, and Certification subgroups
- Two previous exercises/phases in testing & analysis
- Current focus: Phase III crashworthiness building block exercise
 - Monthly teleconferences
 - Meet at CMH-17: Charleston, SC, Tues July 31, 1:30-5:45

Current CMH-17 Challenge Problem: Composite Cargo Floor Stanchion

- Central assembly consisting of four primary members
 - Stanchion #3 (primary crush member)
 - Floor beam
 - Frame
 - Skin
- Initial sizing based on 6g vertical loading condition (Altair Engineering)
 - Cross section geometry
 - Laminate ply orientations
 - Laminate thickness

Primary Crush Member: C-Channel Stanchion

Traditional Design: Use of 0°, ±45°, and 90° plies

Material: IM7/8552 unitape prepreg

Geometry: C-channel

Laminate: "Hard" laminate

- 50% 0°, 25% ±45°, 25% 90° (50/25/25)
- 16 plies (@ 0.0072 in.), 0.115 in. thickness

Initial Testing Activities: Laminate Design for Crashworthiness

- Flat-coupon crush testing
- Tailor laminate to achieve stable crush, high energy absorption
- Mini round-robin to evaluate proposed crush test fixtures and draft standard

Flat Coupon Crashworthiness Testing: What will these tests provide?

Specific Energy Absorption (SEA):

Energy absorbed per unit mass of crushed material

Usefulness typically limited to material/laminate screening and ranking purposes

Sustained Crush Stress: Average crush load divided by the specimen cross sectional area

- A measure of the crashworthiness of a composite material/laminate
- Useful in the design of crush structures

Compression Crush Ratio: Ratio of compression strength to the sustained crush stress

• An indicator of the likelihood of the composite material crushing in a stable manner

Previous Research Results: Crush Modes Affect Energy Absorption

Fragmentation

- Short axial cracks
- Shear failure from compressive stresses
- Extensive fiber fracture

Brittle Fracture

- Intermediate length cracks
- Combines characteristics from other failure modes

Fiber Splaying

- Long axial cracks
- Frond formation
- Delamination dominated

Flat Coupon Crush Testing: Unsupported and Pin-Supported

Laminate Design for Crashworthiness: (50 25 25) Hard Laminate

- "Hard" Laminates (50/25/25) to be tested:
- [902/±45/04]s
- [902/02/±45/02]s
- **[90/+45/0**2/90/-45/0₂]s
- [±45/902/04]s
- [±45/90/0/90/0₃]s

- Stiffest plies at midplane
- High SEA in previous study
- Ply dispersion while maintaining SEA
 - 45's on outside, high SEA previous study

Stanchion #3

45's on outside, greater ply dispersion

Hybrid laminates – with fabric layers

- [(0/90)f/±45/02]s
- [(±45)f/902/04]s
- [(±45)f/90/0/90/0₃]

- 0/90 Fabric layer on outside
- ±45 fabric layer on outside
- Outer fabric layer, greater ply dispersion

Flat Coupon Crush Test Results: Hard Laminates

All laminates produced good energy absorption

- 50% 0°, 25% ±45°, 25% 90°
- No significant difference due to fabric layers in Hybrid laminates
- Minimal variation between laminates investigated
- Two laminates selected for further investigation

Flat Coupon Crush Test Results: Quasi-Isotropic Laminates

Fewer 0° plies produces lower SEA

•No significant difference due to fabric layers in hybrid laminates

 Minimal variation in pinsupported tests

Flat Coupon Crush Test Results: Laminate Comparison

C-Channel Stanchion Crush Testing: Specimen Manufacturing

- IM7/8552 unitape prepreg, 190 gsm
- [902/02/±45/02]s and [90/+45/02/90/-45/02]s
- "hard" laminate
- 0.25 in. corner radius
- Layup and cure in accordance with NCAMP specifications

Current Focus: C-Channel Crush Testing

- University of Utah instrumented drop-weight impact tower
- High-speed video of crush process
- [902/02/±45/02]s and
 [90/+45/02/90/-45/02]s
 "hard" laminates
- Results to be used to assess numerical modeling capabilities

Dynamic Materials Characterization: Compression Testing

- Use of "double dog-bone" specimen
- Dynamic compression test fixture similar to crush fixture
- Variable drop height to control strain rate
- High crosshead mass used to ensure constant strain rate over test duration
- Digital Image Correlation used to determine strain rate
- Used to investigate changes in modulus and strength at strain rates between 5-30 ε/sec

Dynamic Materials Characterization: V-Notched Shear Testing

- Modification to V-Notched Rail Shear Test, ASTM D7078
 - Compression loaded
 - Use in drop tower
- Allows for testing of various laminates
- Use of Digital Image Correlation (DIC) to measure strains during testing
- Challenges with inertial effects producing load oscillations

Dynamic Materials Characterization: ±45° Tensile Shear Testing

- Compression-loaded fixture produces tension load in specimen
- Dynamic analog to ASTM D3518
 - Use of ±45° laminate
 - Tension loaded
 - Load using drop tower
- Use of Digital Image Correlation (DIC) to measure strains during testing

Current Focus: Dynamic Bearing Testing

- Stanchion bolted to the upper floor and lower frame
- Bearing failure possible at bolted connection
- Investigate dynamic bearing strength and bearing crush behavior

OF UTAH

Test Procedure: Dynamic Bearing Testing

- Single fastener/single shear bearing test
- Use of Univ. of Utah flat coupon crush test fixture
- 0.25 in. diameter steel fastener
- Test specimen bolted to steel block
- Compression loaded
 - Quasi-static: 0.4 in/min
 - Dynamic: 12 ft/sec (drop-weight impact)

Initial Test Results: Dynamic Bearing Testing

- Initial load peak
 (bearing strength)
 followed by
 progressive crush
- Dynamic bearing strength 10-20% higher than quasistatic

Dynamic Bearing Testing: Energy Absorption

- Minimal difference
 - in SEA value from static and dynamic testing
- Significantly higher SEA than obtained for laminate crush

Dynamic Bearing Testing: Energy Absorption

- Minimal difference
 - in SEA value from static and dynamic testing
- Significantly higher SEA than obtained for laminate crush
- SEA based on width of fastener (0.25 in.) and crush displacement

BENEFITS TO AVIATION

- Building block approach for composite crashworthiness
- Development of coupon-level testing to assess crashworthiness of composite materials and laminates
- Documentation of building block exercise in CMH-17
- Dissemination of research results through FAA technical reports and conference/journal publications

Thank you for your attention!

Questions?

