

Failure of Notched Laminates Under Out-of-plane Bending

The Joint Advanced Materials and Structures Center of Excellence

Motivation and Key Issues

Develop analysis techniques useful in design of composite aircraft structures under out-of-plane bending

Objective

Determine failure modes and evaluate capabilities of current models to predict failure

- Approach
 - Experiments: Four point bending
 - Modeling: Progressive damage development and delamination (ABAQUS)

FAA Sponsored Project Information

FAA Technical Monitor

Curt Davies & Lynn Pham

- Other FAA Personnel Involved
 Larry Ilcewicz (technical advisor)
- Industry Participation
 - Gerry Mabson, Boeing (technical advisor)
 - Tom Walker, NSE Composites (technical advisor)

Center-notched laminates

- Carbon Fiber / Epoxy Matrix Composite (T300/913)
- 25.4-mm and 101.6-mm ovaloid notches
- 20 and 40 ply thicknesses

- 10%, 30%, and 50% zero-degree plies
- Total of twelve different specimen types

Approach

- Four-point bending
- Three replicates of each specimen
- Primary interest
 - Method of failure
 - Visible damage
 - Delamination
 - Maximum moment (failure load)

5

Experiments

Experiments

Results: 20 ply

- Negligible visible damage before failure
- Failure was sudden
- Failure resulted in specimen fracture (two pieces)

- Failure load (average, 10%, 30%, 50% zero degree plies)
 - 25.4-mm notch: 814, 859, 1094 N-mm/mm
 - 101.6-mm notch: 925, 836, 1014 N-mm/mm

Experiments

Results: 40 ply

- Damage and delamination, primarily along 0° and outermost plies, prior to failure
- Failure was gradual
- Failure resulted in buckled plies on compression side

- Failure load (average, 10%, 30%, 50% zero degree plies)
 - 25.4-mm notch: 2691, 3292, 4030 N-mm/mm
 - 101.6-mm notch: 2882, 2971, 4244 N-mm/mm

Approach: elements

- ABAQUS FEA
- Half-symmetry model (weak coupling between bending and twisting found to be negligible)
- Conventional shell elements not appropriate, need "stackable" elements to capture delamination
- Continuum shell elements provide this capability

Approach: Damage

- Out-of-plane bending causes non-uniform strain through the thickness
- Requires a composite damage theory that treats damage progression on a ply-by-ply level
- The model used here, from ABAQUS, is that of Hashin
- Hashin model uses concepts from damage mechanics
 - Damage reduces effective load a carrying area
 - Damage variable d varies 0 (no damage) to 1 (failed)

$$\hat{\sigma} = \frac{\sigma}{1-d}$$

- Based on LEFM, crack propagation occurs when a critical energy release rate, G_c is attained
- Mixed-mode combined via a linear failure criteria

$$\frac{G_I}{G_{Ic}} + \frac{G_{II}}{G_{IIc}} + \frac{G_{III}}{G_{IIIc}} = 1$$

 Delamination can only occur in the model where interfaces are provided

The Joint Advanced Materials and Structures Center of Excellence

- Initially no interfaces included (delaminationn not possible)
- Agreement for 20-ply laminates is ~ <10%
- Much greater error for 40 ply cases
- Corresponds to experimental observation

Number	Notob	Percent	FEA:		
Number	NOLCH	Zero-	Percent Difference from Experiment		
of	Length [mm]	degree	No Two Four		
Plies		plies	Interfaces	Interfaces	Interfaces
		10	-2.7%		
20	25.4	30	-2.2%		
		50	9.5%		
	101.6	10	-11.5%		
		30	-3.7%		
		50	-6.4%		
40	25.4	10	21.2%		
		30	20.8%		
		50	28.4%		
	101.6	10	14.8%		
		30	15.7%		
		50	0.1%		

- Interfaces added
 - Below outer-most 0° ply
 - Below second-outer-most
 0° ply
- Agreement still good for 20ply case
- Significant change for 40 ply case

Numbor	Notoh	Percent	FEA:		
Number	NOLCH	Zero-	Percent Difference from Experiment		
of	Length	dearee			
Plies	[mm]				
		plies	Interfaces	Interfaces	Interfaces
20		10	-2.7%	7.1%	
	25.4	30	-2.2%	1.3%	
		50	9.5%	-1.2%	
	101.6	10	-11.5%	9.1%	
		30	-3.7%	-0.5%	
		50	-6.4%	-5.3%	
40		10	21.2%	3.0%	
	25.4	30	20.8%	-0.9%	
		50	28.4%	3.0%	
	101.6	10	14.8%	-18.1%	
		30	15.7%	-15.6%	
		50	0.1%	-11.5%	

Results: Four interfaces

- Interfaces added
 - Below outer-most 0° ply
 - Below second-outermost 0° ply
 - Below outer-most ply
 - Above outer-most 0° ply
- Agreement still good for 20ply case
- No significant change for 40 ply case

Number	Notob	Percent	FEA:		
Number	NOLCH	Zero-	Percent Difference from Experiment		
of Plies	[mm]	degree	No	Two	Four
		plies	Interfaces	Interfaces	Interfaces
20		10	-2.7%	7.1%	1.7% *
	25.4	30	-2.2%	1.3%	-5.4%
		50	9.5%	-1.2%	-3.4%
	101.6	10	-11.5%	9.1%	
		30	-3.7%	-0.5%	
		50	-6.4%	-5.3%	
40		10	21.2%	3.0%	8.7%
	25.4	30	20.8%	-0.9%	1.8%
		50	28.4%	3.0%	8.7%
	101.6	10	14.8%	-18.1%	
		30	15.7%	-15.6%	
		50	0.1%	-11.5%	

- The Hashin damage criteria appears to be a useful tool for predicting failure loads in laminate composites under out-of-plane bending when delamination-driven buckling does not occur
- When such buckling does occur, it appears necessary to also include a means of allowing ply delamination to occur (e.g. VCCT) in order to obtain reasonable estimates of failure loads.
- The addition of delamination interfaces to the model when buckling does not occur, does not appear to have a significant effect on predicted failure load

- Issue found with multiple processors and ABAQUS
 - Same input file gave results (failure moments) of
 - 1 cpu: 2940 N (repeated 5 times)
 - 2 cpus: 3100 N (once) and 2976 N (once)
 - 3 cpus: 3198 (once), 2936 (once), no convergence
 - Suspect VCCT

- Benefit to Aviation
 - Provide guidance to designers when analyzing notched composites subjected to out-of-plane bending
- Future needs
 - Perhaps revisit 101.6-mm notch case?
 - Revisit sensitivity study?