

Infrared Spectroscopy: A Potential Quality Assurance Method for Composite Bonding

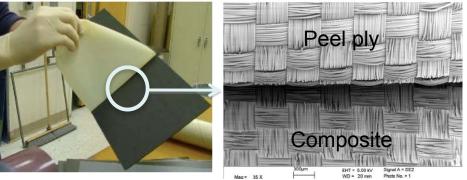
2012 Technical Review Ashley C. Tracey & Brian D. Flinn University of Washington Materials Science and Engineering

Infrared Spectroscopy: A Potential Quality Assurance Method for Composite Bonding

- Motivation and Key Issues
 - Most important step for bonding is SURFACE PREPARATION!!
 - Inspect surface prior to bonding to ensure proper surface preparation
- Objective
 - Develop QA technique for surface preparation
- Approach
 - Use FTIR to characterize different surface preparations and levels of contamination
 - CFRP prepared with peel ply for secondary bonding
 - Peel ply contamination
 - Manual abrasion to remove peel ply texture from CFRP

Quality Control Methodologies for Surface Preparation Processes for Composite Bonding

- Principal Investigators & Researchers
 - Brian D. Flinn (PI)
 - Ashley Tracey (PhD student, UW-MSE)
 - Elise Santa Maria (undergraduate, UW-MSE)
- FAA Technical Monitor
 - David Westlund
- Other FAA Personnel Involved
 - Larry Ilcewicz
 - Curtis Davies
- Industry Participation
 - Toray Composites
 - Precision Fabrics & Richmond Aerospace & Airtech International
 - The Boeing Company (Kay Blohowiak, Peter Van Voast, William Grace, Tony Belcher, Paul Vahey, Paul Shelley, Greg Werner and Marc Piehl)



Composite Bonding and Surface Preparation

 Peel ply is a desirable surface preparation because it produces repeatable and consistent surfaces and can prevent surface contamination

- Paste adhesives not compatible with peel ply surface → further surface treatment required
- Composite bonds are materials system specific (prepreg/ surface prep/adhesive) → potential problems that could degrade bond quality:
 - Incorrect peel ply?
 - Contamination?
 - Improper abrasion?

FTIR to Examine Surfaces

- Why might FTIR be used for QA?
 - Requirement of adhesion:
 - formation of primary chemical bonds between the adherend and adhesive
 - FTIR is used to measure surface chemistry
 - surface prep and contaminants influence surface chemistry
 - Portable units available
 - Suitable for factory and field applications
- Need to assess ability of FTIR as a QA technique

Assess ability of FTIR to identify improperly prepared surfaces

- Can FTIR detect different peel or release ply materials?
 - Nylon, polyester, SRB
- What level of siloxane detectable with FTIR?
 - Various levels of contamination (0.1%-2% and SRB)
- Can FTIR detect proper abrasion?
 - Different levels of manual abrasion to remove peel ply texture/residue

FTIR Methodology

Bruker Vertex 70 FTIR

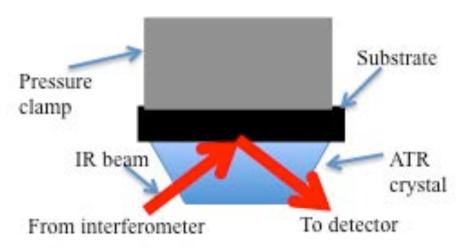
- Bench-top instrument
- Diamond attenuated total reflectance (DATR)

http://www.aoc.kit.edu/english/612.php

Agilent Technologies Exoscan FTIR

- Handheld device
- Diffuse reflectance

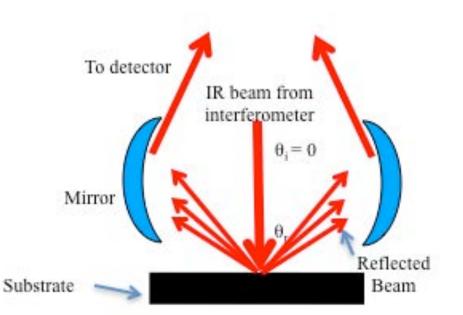
www.chem.agilent.com



DATR Methodology

- MIR data region: 4000 cm⁻¹ to 400 cm⁻¹
- Data collection: 16 scans with 4 cm⁻¹ resolution for background and specimen
- Pressure clamp used for intimate contact between crystal and sample → max pressure: 30 ksi

An infrared beam path for a single bounce DATR



Diffuse Reflectance Methodology

- MIR data region: 4000 cm⁻¹ to 650 cm⁻¹
- Data collection: 90 scans with 16 cm⁻¹ resolution for background and specimen

An infrared beam path for diffuse reflectance

- FTIR spectra of CFRP surfaces complex
 Multiple constituents → many spectral peaks
- How to analyze spectra with confidence?
 Multivariate analysis!
- Multivariate analysis: Principal Component Analysis (PCA)
 - Identification of peak locations and intensities not obvious to the observer
 - Can be used to develop test interfaces to remove operator interpretation → go/no go output

Multivariate Analysis: Unscrambler X

- Principal Component Analysis (PCA)
 - Exploratory data analysis identify trends
 - 2 principal component analysis
 - Some spectra required preprocessing: Savitsky-Golay 1st derivative with 5 smoothing points fit to a 2nd order polynomial
 - Derivative to amplify changes in slope of spectral peaks while reducing effects of baseline offsets
 - Smoothing points to reduce influence of noise

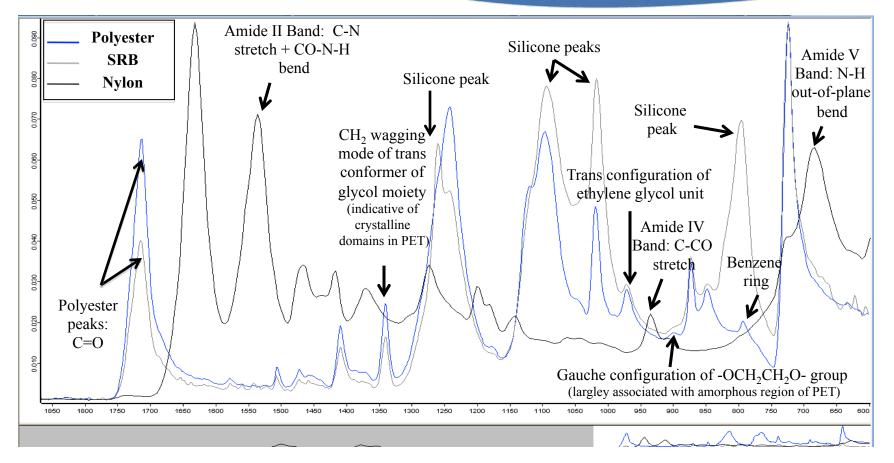
Materials

- Toray 3900/T800 unidirectional laminates
 Autoclave cure (177°C, 0.6MPa)
- Peel ply surface prep
 - Precision Fabric Group (PFG) 60001 polyester peel ply
 - PFG 60001 polyester peel ply with controlled siloxane amounts
 - 0.1% to 2% siloxane
 - PFG Super Release Blue (SRB) siloxane release ply
 - PFG 52006 nylon peel ply
- Manual abrasion surface prep
 - Random orbital sander with Diablo 120 grit ceramic abrasive sanding discs

Peel Ply Type

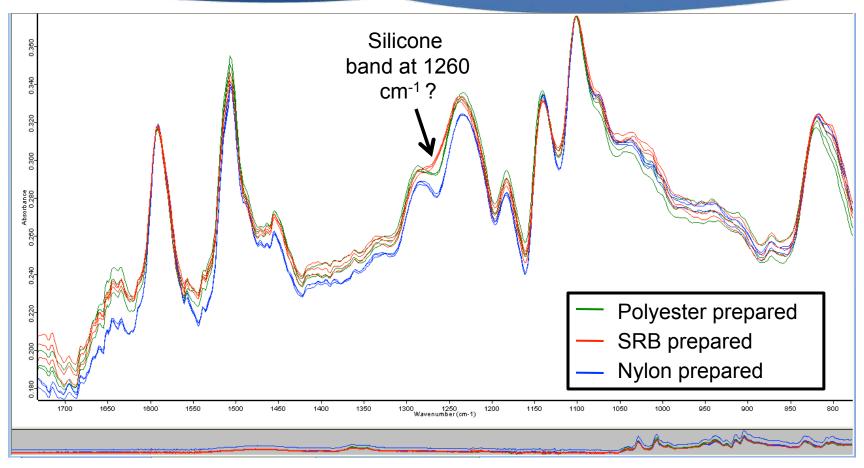
- Peel ply surface preparation for adhesive bonding is materials system specific
 - Previous research showed CFRP prepared with different peel ply materials and bonded with MB 1515-3 film adhesive affect bond quality

	Polyester Prepared	Nylon Prepared	SRB Prepared
Failure Mode	Cohesive	Adhesion	Adhesion
G _{IC}	812±35 J/m ²	$G_{IC} = 122 \pm 15 \text{ J/m}^2$	$G_{\rm IC}$ < 94 J/m ²


Need to ensure correct peel ply material used

DATR Sensitive to Peel Ply Material

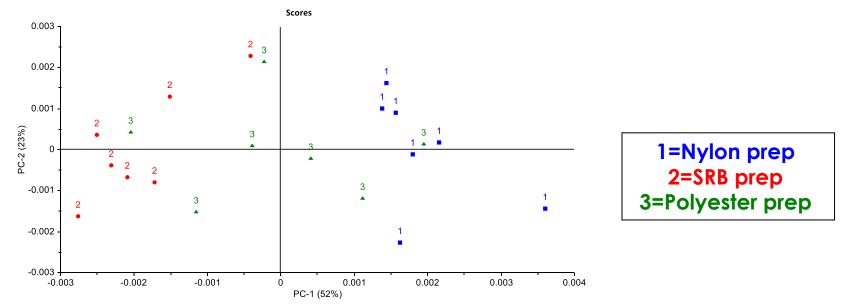
DATR can differentiate between peel plies


> Peel ply prep detectable on CFRP surface?

DATR of CFRP Prepared with Different Peel Ply

Small differences between CFRP peel ply prep observed

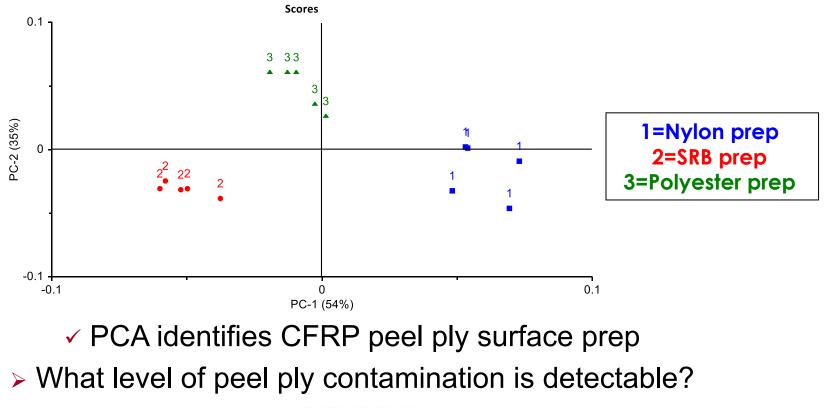
Multivariate analysis?

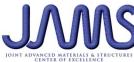


DATR of CFRP Prepared with Different Peel Ply

- Multivariate Analysis: PCA of two PCs
 - Preprocessing: Savitsky-Golay 1st derivative with 5 smoothing points fit to a 2nd order polynomial

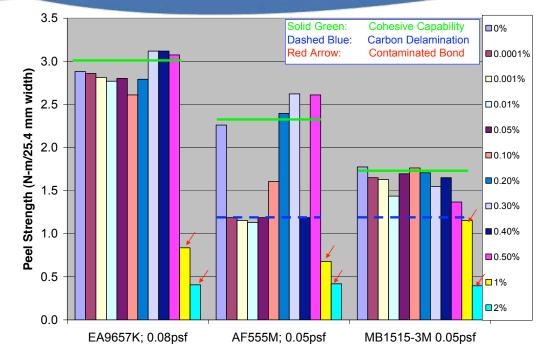
PCA identifies no significant difference between CFRP peel ply prep
 Peel ply prep detectable with diffuse reflectance?





Diffuse Reflectance Sensitive to CFRP Prepared with Different Peel Plies

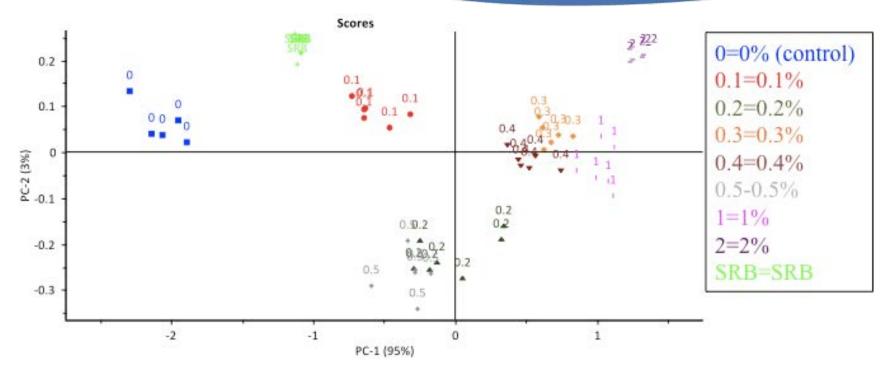
- Multivariate Analysis: PCA of two PCs
 - Preprocessing: Savitsky-Golay 1st derivative with 5 smoothing points fit to a 2nd order polynomial



Si Contamination of Peel Ply

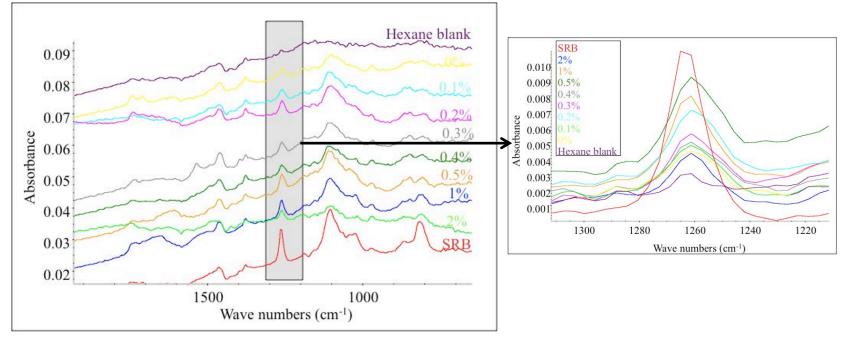
- Surface contamination detrimental to bonding
 - contamination cannot be completely eliminated from all composite fabrication environments – siloxane

Need to inspect CFRP surfaces for contaminates B-RAT results showing bond quality is degraded of CFRP substrates with peel ply contamination levels at 1% siloxane and greater¹

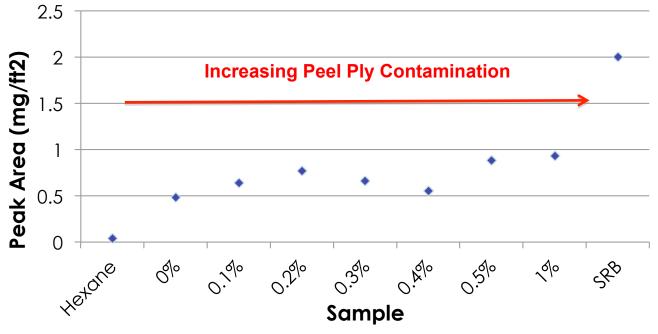

¹VanVoast, P.J., P.H. Shelley, R.L. Blakely, C.B. Smith, M.P. Jones, A.C. Tracey, B.D. Flinn, G. Dillingham, B. Oakley. "Effect of Varying Levels of Peel Ply Contamination on Adhesion Threshold." SAMPE 2010. Seattle, WA, May 17-20, 2010.

Si contamination on CFRP difficult to quantify with Diffuse Reflectance FTIR

- PCA identifies some differences between siloxane contaminated samples
 - PCA does not show difference between acceptable and unacceptable levels of contamination
 - Different technique to identify level of contamination?



How to quantify amount of Contamination Transferred to CFRP Substrate

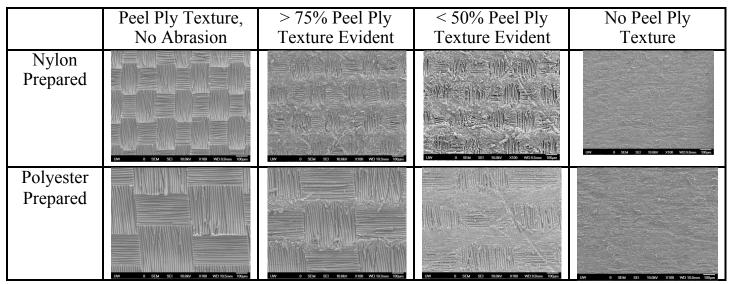

Hexane Extraction Results using FTIR with Vertical Integrating Sphere (sensitive to small amounts of material): 2" x 2" samples to quantify how much siloxane transfers to surface

- All spectra show characteristic silicone peaks at 1260 cm⁻¹, 1100 cm⁻¹, 1022 cm⁻¹ and 800 cm⁻¹
- Peak at 1260 cm⁻¹ used for analysis of amount of siloxane transferred to surface
 CECAM
 CECAM
 CECAM
 CECAM

Hexane Extraction 1260 cm⁻¹ Peak Areas as a Function of Peel Ply Contamination

 CFRP surface contamination increases with increased peel ply contamination – maybe use a wipe and analyze residue to determine contamination level?

- Diffuse reflectance or DATR to analyze residue?
- Are different levels of abrasion detectable with FTIR?



Manual Abrasion to Remove Peel Ply Texture

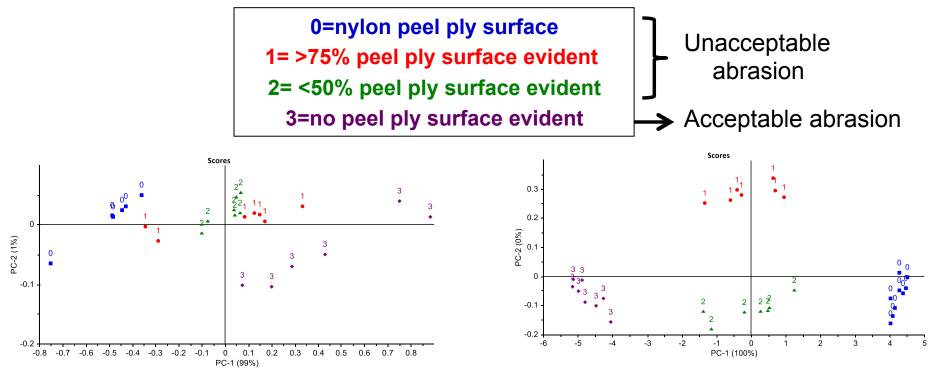
- Previous research shows polyester peel ply prep of 177°C cure composites fail in adhesion when bonded with paste adhesives²
 - Surface abrasion can be used to remove peel ply texture/residue from composite → cohesive failure when bonded with paste adhesives²
 - Want to detect levels of abrasion to remove peel ply surface layer

²Bossi, R., R. Carlsen, F.J. Boerio and G. Dillingham. "Composite Surface Preparation QA for Bonding." SAMPE 2005. Long Beach, CA, May 1-5, 2005.

DATR and Diffuse Reflectance Sensitive to Manual Abrasion to Remove Polyester Peel Ply Texture

PCA of DATR Spectra

PCA of Diffuse Reflectance Spectra


✓PCA of diffuse reflectance spectra shows difference between acceptable and unacceptable abrasion levels to remove polyester peel ply texture/residue → more sensitive than DATR

DATR and Diffuse Reflectance Sensitive to Manual Abrasion to Remove Nylon Peel Ply Texture

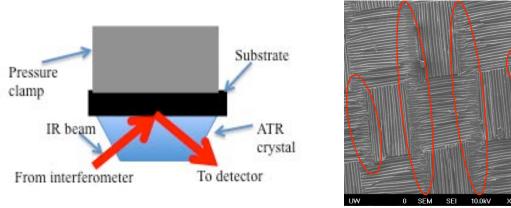
PCA of DATR Spectra

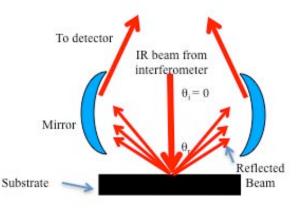
PCA of Diffuse Reflectance Spectra

✓PCA of diffuse reflectance spectra shows difference between acceptable and unacceptable abrasion levels to remove nylon peel ply texture/residue → more sensitive than DATR

Summary of FTIR Results

	FTIR Sampling Interface	
	DATR	Diffuse Reflectance
Peel Ply Prep	?	✓
Si Contaminants	N/A	?
Abraded Surfaces to Remove Peel Ply Residue	✓-	~
Scarfed Surfaces/Repair	TBD	TBD





DATR vs. Diffuse Reflectance

- Diffuse reflectance shows greater sensitivity to surface preparation than DATR
 - Due to sampling volume?
 - DATR spectra from surface in contact with DATR crystal ideal for smooth surfaces, less contact with rough surfaces

 Diffuse reflectance spectra better for rough surfaces – can get information from peel ply channels

Diffuse reflectance more sensitive to rough surfaces than DATR

- Peel Ply Prep:
 - Diffuse reflectance can identify polyester vs. nylon vs. SRB prep
- Peel Ply Contamination:
 - Diffuse reflectance can identify some differences between siloxane contaminated samples
 - Hexane wipe alternative? Diffuse to analyze wipe?
- Abrasion to Remove Peel Ply Texture:
 - Diffuse reflectance can identify removal of nylon and polyester peel ply texture

FTIR has potential as a quality assurance technique for adhesive bonding process

Looking Forward

- Benefit to Aviation
 - Better understanding of peel ply surface prep.
 - Guide development of QA methods for surface prep.
 - Greater confidence in adhesive bonds
- Future needs
 - Surface characterization vs. bond quality model
 - Bond quality vs. amount of peel ply texture on abraded surface
 - QA methods to ensure proper surface for bonding
 - Applicability to other composite and adhesive systems
 - Model to guide bonding based on characterization, surface prep. and material properties

Acknowledgements

- FAA COE: JAMS, AMTAS
- The Boeing Company
 - Kay Blohowiak, Pete Van
 Voast, Will Grace, Marc Piehl, Paul Shelley, Paul Vahey, Greg Werner
- Precision Fabric Group
- Richmond Aircraft Products
- Airtech International AIR

Richmo

End of Presentation.

Thank you.

Acteter of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE