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 Motivation and Key Issues

— Disbond defects are of serious concern in safety-critical aerospace
composites.

— The influence from a disbond defect on Lamb wave propagation is significant.
* Objective
— Quantitatively demonstrate an integrated diagnostic/prognostic system to
make predictions of the structural health and remaining life of adhesively-
bonded composite structures.
* Approach
— Ball drop test to induce disbond defects
— Thermal imaging technique
— Lamb wave testing technique

— Finite element method (FEM) to simulate Lamb wave propagation
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« GLAss-REinforced (GLARE) laminate is a class of fiber metal
laminates, which are hybrid composites consisting of thin alternating
bonded layers of metal sheets and fiber-reinforced epoxy prepreg.

2024 T3 Al alloy
T T T R T

Fiber/epoxy prepreg
Fig.1: Configuration of GLARE 2A-2/1-0.4
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JWS  Ball drop induced disbond defects AMIAS

in a GLARE plate
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»A ball drop was used to introduce disbond 17 Steel ball
defects in the GLARE plate.

»A 1-inch diameter steel ball was released
from 3 feet high to strike the center point of
the GLARE plate.

» The impact energy was 606 mJ converted
from the kinetic energy of the falling ball.

»The impact events was applied between 1

_ Fig. 2: A schematic of the
and 200 times. ball drop test.
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After each ball-drop test, the GLARE plate was examined with pulsed
thermography (single-sided inspection).
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Animation Courtesy of Thermal Wave
Imaging, Inc.

Fig. 3: A pulsed thermography system for imaging: (a) system schematic
and (b) experimental setup.
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Fig. 4. Thermal images of the defect area.
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JMIS  Ball-drop induced disbond defects
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Fig. 5: The growth of disbond sizes at the impact energy of 606 mJ.

»The size of the disbond defect was scaled from the images.
» The disbond defect diameter increases with the number of impacts.

»The disbond defect of 50 or less ball impacts was not detected using
the thermal imaging system raw data in its current configuration.
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testing on a GLARE laminate
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Fig. 6: An examination syste r Lamb wave test: (a) system schematic

and (b) experimental setup.

g \?V(i)nudrgsv.e-lc-je?o%Cé)eus;sc’zfs?gﬂ:Inmng PVDF .comb transducers:
> f,= 695 KHz, V,_=250mV > 10 fingers

» Gain of RF amplifier: 377 » Finger length=20mm
> Low pass filer: f,=~1 MHz » N=2.45mm

» Gain of Pre-amp: 34 dB
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Fig. 7: Lamb wave testing at /= 695 KHz: (a) Launching signal,
(b) Detected signal for various ball impacts.
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detected A; mode Lamb wave signal

=3 7/
% goce " T T T 0impacts 5,160 —o— E)r(‘g:?;r:rtal dat:?;
— 6.0 @ —— 20 impacts %150 Y=0037x+158 1
S 40 b M ~— 50 impacts > 140 R=0.984
D i J\ (I 2
$ 2.0 LA N '( \ / j~ \ / f f\ A A\ $BO§
e ndd i || \r \/ \ VAR A AATS I B
& < ‘ | | ‘ i\ ¥ ~ k
< 40 \ \ i —— 100 impacts= & 100
g 60 /R 150 impact -g 90 (b)
g AN I B e
8 100.0 110.0 120.0 Impact events
Time (us)

Fig. 8: (a) Detected A, mode Lamb wave signal for various ball impacts;
(b) The influence of the ball impacts on the detected A, mode Lamb
wave maximum peak-to-valley voltages.

The measured A, mode Lamb wave signals decrease
linearly as a function of the ball impact events.
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detected A, mode Lamb wave amplitude

i

> The reduced A, mode amplitudes can be
attributed to the wave reflection, scattering, and
mode conversion in the disbond defect area.

-

>The fitting parameter D, represents the
sensitivity of the Lamb wave detection system.

CH-

»The disbond defect sizes can be predicted
from the amplitude monitoring of the selected

Lamb wave signals when parameter D, is
identified.

-
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Fig. 9: Percentage of the measured
A, mode Lamb wave signal as a
function of the disbond diameter.
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Spacing A=2.45mm to match the A, mode wavelength

JWS  Lamb wave simulation with Finite AMIAS
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Fig. 10: Finite element model setup 14
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PVDF transducer (Deformation) CECAN

T ooms someron T ANSYS

TIME=.100E-07 Noncommercial Use Only
UsuUM (AVG)

RSYS=0 JUL 24 2009
DMX =.462E-14 15:04:09
SMX =.462E-14

The deformation was amplified by
50,000 times for better viewing

.194E-08 .389E-08 .583E-08 .778E-08
.972E-09 .292E-08 .486E-08 .681E-08 .875E-08
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disbond void (Deformation)

: NODAL SOLUTION ffANSYS

TIME=.150E-04 Noncommercial Use Only
UsSUM (AVG)

RSYS=0 JUL 24 2009
DMX =.212E-08 15:12:39
SMX =.212E-08

Void length=0.5mm at x=100mm

The deformation was amplified by
50,000 times for better viewi

.887E-09 .177E-08 .266E-08" .355E-08
.443E-09 .133E-08 .222E-08 .310E-08 .399E-08
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Fig. 11: Displacement component U, at x=200mm, y=1.05mm (top surface)

for various void size.
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Fig. 12: Displacement component U, at x=200mm, y=1.05mm (top surface)

for various void size.
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Tab. 1: Amplitudes and travel time of the displacement component (U,) of the A,
mode Lamb wave versus void sizes

Void Void U, maximum Percentage of Arrival time of the  Time delay
length  height amplitude (nm) Y maximum first U, peak (us) = in U, (us)
(mm)  (mm) amplitude
0 0 2.00 - 61.23 -
01 025 1.99 99.5% 61.23 0
0.5 0.25 1.53 76.5% 61.29 0.06
1.0 0.25 1.05 52.5% 61.44 0.21
2.0 0.25 1.50 75.0% 61.56 0.33
4.0 0.25 1.65 82.5% 61.98 0.75
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Experiments:

» The measured A, mode Lamb wave decays exponentially
with increasing disbond diameter.

» The disbond defect sizes can be predicted from the
measured Lamb wave signals using the exponential model.

FEM model:

» Both the displacement amplitudes and travel time of the A,

mode Lamb waves were shown to be influenced by the
disbond void.

» The time delay increases with increasing disbond sizes,
which can be used as a parameter to monitor the disbond
growth
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 Benefit to Aviation

The study of the influence of a disbond defect on Lamb
wave propagation can be used for SHM of safety critical

structures.

* Future needs
— More testing and field application.
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