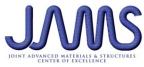


Durability of Adhesively Bonded Joints For Aircraft Structures

2012 Technical Review Dan Adams, Larry DeVries, Clint Child University of Utah

FAA Sponsored Project Information

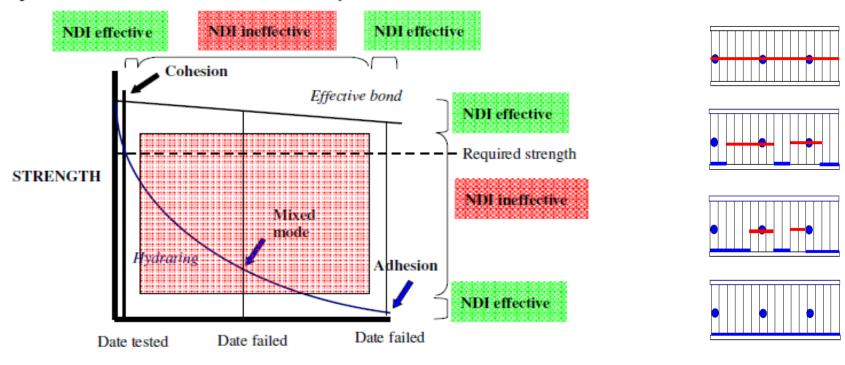
- Principal Investigators:
 Dr. Dan Adams Dr. Larry DeVries
- Graduate Student Researcher: Clint Child
- FAA Technical Monitor: David Westlund
- Primary Collaborators: Boeing Air Force Research Lab National Research Council – Canada


BACKGROUND:

Metal Wedge Crack Durability Test

ASTM D 3762, "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

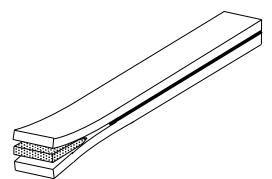
- Bonded aluminum double cantilever beam specimen is loaded by forcing a wedge between the adherends
- Wedge is retained in the specimen
- Assembly placed into a test environment
 - Aqueous environment
 - Elevated temperature
- Further crack growth is measured following a prescribed time period



AREA OF CONCERN:

Reduction in Bond Strength Through Hydration

Davis, M.J., and McGregor, A. "Assessing Adhesive Bond Failures: Mixed-Mode Bond Failures Explained," I SASI Australian Safety Seminar, Canberra, 4-6 June 2010.



GENERAL PERCEPTIONS:

Current ASTM D 3762 Standard

- Well-suited test methodology for assessing adhesive bond durability
- Standard includes a good description of test specimen

- Additional guidance needed in specimen manufacturing
- More detail required in test procedure
- Lacking sufficient guidance regarding conditions and requirements that constitute an acceptable metal bonded joint

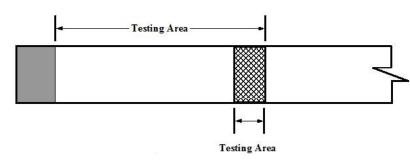
REVISION OF WEDGE TEST METHOD :

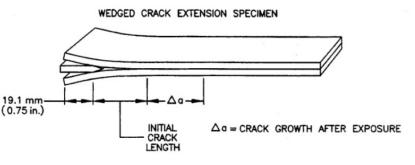
Primary Areas Identified

Specimen Preparation

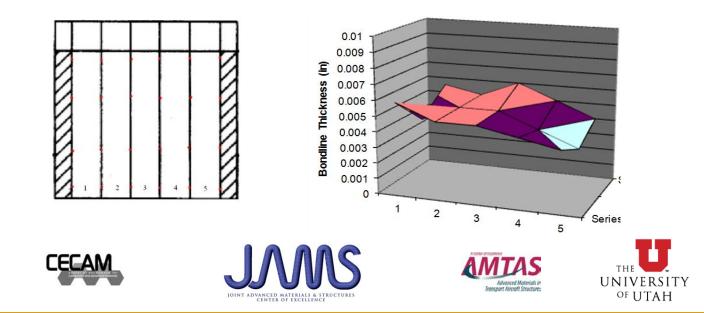
- Controlling bondline thickness
- Machining specimens from panel

Testing Procedure


- Method of wedge insertion
- Measurement of initial crack length
- Specimen orientation during testing
- Specification of test environment
- Identification of failure mode

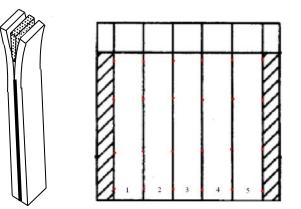

Interpretation of Results

- Role of Initial Crack Length
- Role of Crack Growth
- Role of Failure Mode in Test Area



SPECIMEN PREPARATION ISSUES:

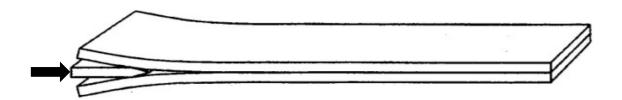
Controlling Bondline Thickness


- Uniform bondline thickness believed to be important for durability testing
- Without precautions, different bondline thicknesses will likely result across panel
- ➡ Place guidance into standard


SPECIMEN PREPARATION ISSUES:

Cutting Panel into Test Specimens

- Many methods in use
 - Band saw and mill
 - Gang saw
 - Water jet cutting
 - Others?
- Establish best practices
- Place guidance into standard

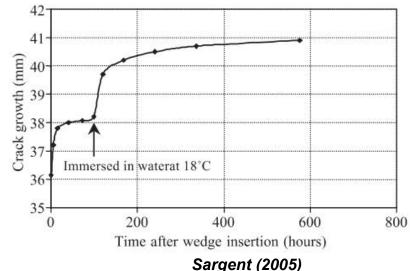

Method of Wedge Insertion

• Guidance from ASTM D 3762:

"Open the end of the test specimen that contains the separation film, and **insert the wedge**"

• "Tappers" vs. "Thumpers"

Encourage gentle hammering or pressing? Effect on initial crack length?



TEST PROCEDURE ISSUES::

Measurement of Initial Crack Length

<u>When should "initial" crack length measurement made?</u>

- ASTM D3762
 - Immediately after wedge insertion
- TTCP AG13
 - One hour after wedge insertion

Investigate time required for a₀ to stabilize Revisit standard: Establish time following wedge insertion for crack measurement to be made

TEST PROCEDURE ISSUES:

Guidance on Suitable Test Environment

- ASTM D3762:
 - "A typical accelerated aging environment commonly used is 50°C (122°F) and condensing humidity."
- TTCP AG13
 - 50°C (122°F), 95% RH (non-condensing)
- Industry users (aerospace):
 - Dependent on intended use, type of adhesive being tested
 - 120°F, 140°F, 160°F
 - 24 hrs, 7 days, 1 month

LÇ	. 4	AI	VI.	
	7		N. Constant	

Test Environment Number	Temperature, °C (°F) ⁴	Moisture Conditions % Relative Humidity ⁸
1	23 (73.4)	immersed in distilled or deionized water
2	23 (73.4)	-50
	23 (73.4)	15
4	35 (95)	.90
5	35 (95)	100
6	50 (122)	90
7.	50 (122)	100
8	60 (140)	100
9	71 (160)	100
10	35 (95)	5 % salt fog
11	ambient (outdoors)	ambient (outdoors)
12	other (specify)	other, including aquecus solutions or nonaqueous liquids (specify)

TABLE 1 Standard Test Environments

From ASTM D3762

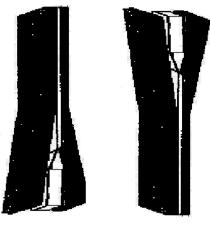
- How should user choose environment?
- Place guidance into standard

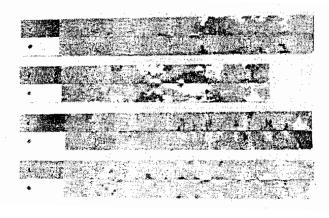
TEST PROCEDURE ISSUES:

Specimen Orientation During Testing

- Orientation of specimen during testing is not specified in ASTM D3762
- TTCP AG13 suggests that orientation be specified

Four Possible Orientations...


- Investigate orientation effect on resulting crack length
- Provide guidance in standard



INTERPRETATION OF RESULTS ISSUES:

Failure Mode as Part of Acceptance Criteria

- ASTM D 3762:
 - "Failure mode is to be reported"
 - No mention of failure mode in regards to acceptance criteria
- TTCP AG13:
 - "The surface generated during exposure must not exhibit greater than 10% adhesion (interfacial) failure."

McMillan (1979)

Modify acceptance criteria: Emphasis on failure mode

- What percentage of adhesion failure is acceptable?
- How should failure mode percentage be determined?

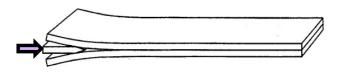
INITIAL EXPERIMENTAL PROGRAM

Investigate Issues with Testing Procedure

- Effect of wedge insertion method
- Measurement of initial crack length
- Effect of specimen orientation during testing

Specimen Fabrication

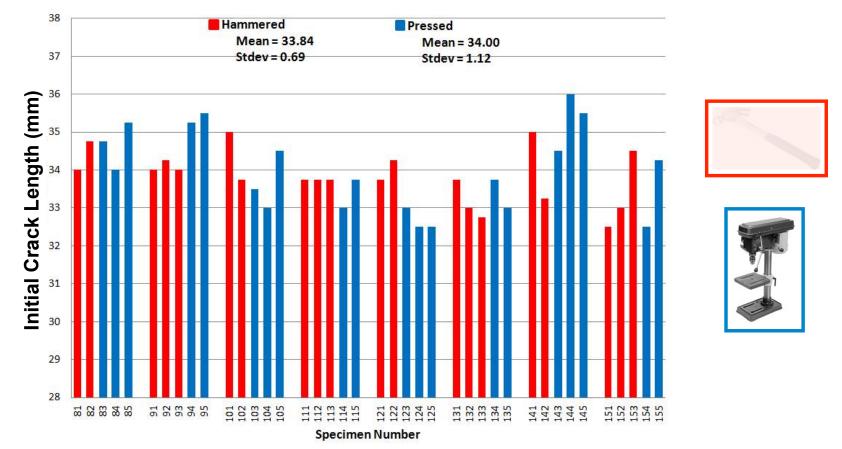
- Adherend: 2024-T3 aluminum alloy
- Multiple Surface Preparations
 - "Ideal" Bonding
 - Phosphoric acid anodized with BR 6747-1 bond primer
 - Intentional "Weak" Bonding
 - Grit Blast with BR 6747-1 bond primer
 - Phosphoric acid anodized without bond primer
- Adhesive: AF 163-2K film adhesive


EXPERIMENTAL PROGRAM:

Method of Wedge Insertion

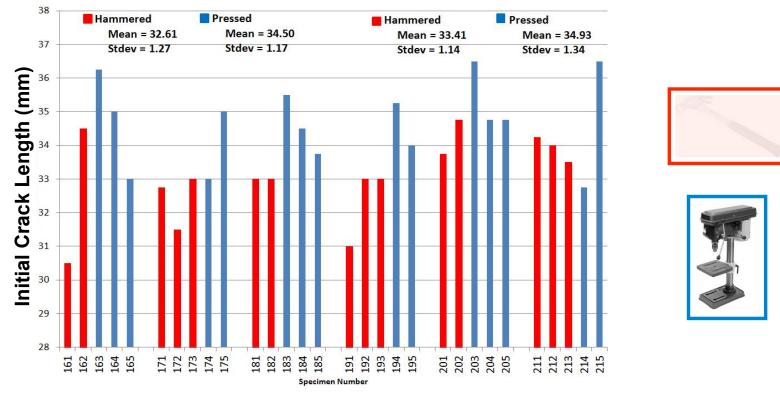
Investigate "Tappers" vs. "Thumpers" - Wedge insertion rate

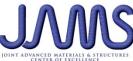
- "Tappers" (Pressed)
 - Use of drill press (0.2 in/sec)
- "Thumpers" (Hammered)
 - Single strike
- Effect on initial crack length, a₀
- Compare crack growth of *tapped* and *thumped* specimens
 - After wedge insertion in lab
 environment
 - After environmental exposure



Initial Crack Length With "Ideal" Bonding

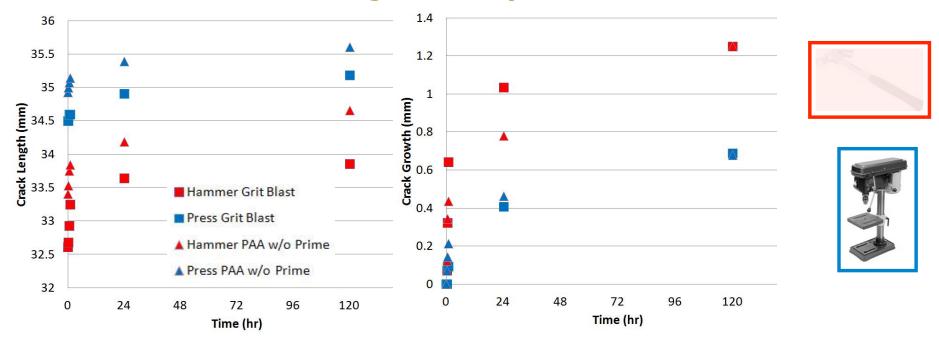
Difference not statistically significant for "ideal" bonding





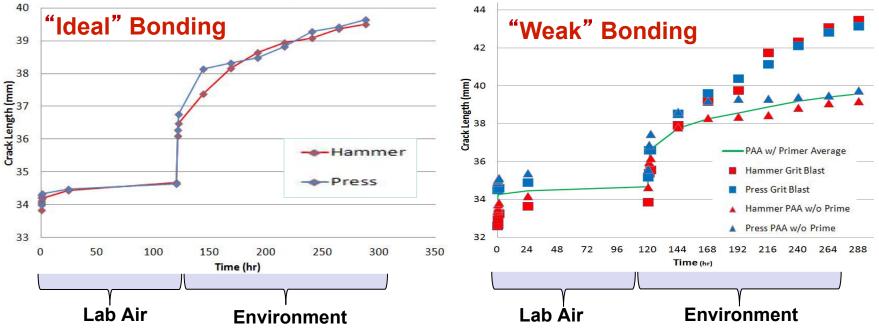
Initial Crack Length With "Weak" Bonding

- Statistically significant differences for "weak" bonding
- Longer initial crack lengths for pressed than hammered specimens



Crack Growth During Five Days at Ambient Conditions

- Difference not statistically significant for "ideal" bonding
- Statistically significant differences for "weak" bonding
 - Pressed specimens had longer crack length after 5 days
 - Hammered specimens experienced greater crack growth after 5 days



Crack Growth During 1 Week at 50 °C 100% Relative Humidity

- Difference not statistically significant for "ideal" bonding
- Statistically significant differences for "weak" bonding
 - Different crack lengths at onset of conditioning
 - Similar crack lengths following conditioning
 - Different crack growths for pressed and hammered specimens

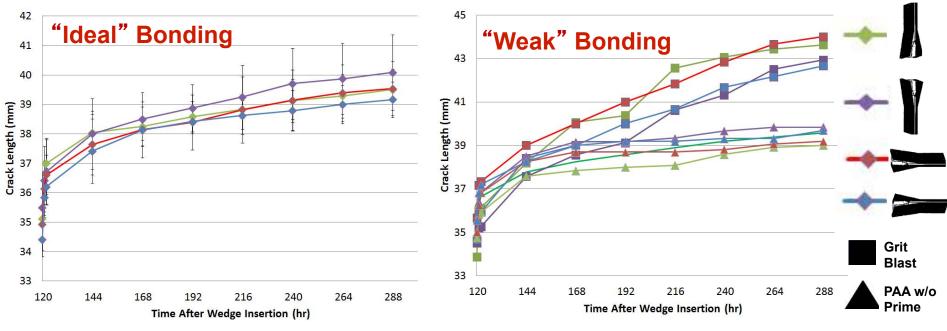
Summary of Findings

No significant effects with "ideal bonding"

- Initial Crack Length
- Growth Before Environmental Exposure
- Growth During Environmental Exposure

Significant effects for "weak bonding"

- Initial Crack Length
- Growth Before Environmental Exposure
- Growth During Environmental Exposure
- Place guidance into standard regarding insertion method

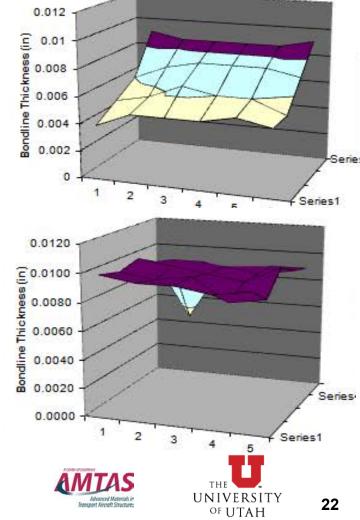


SPECIMEN ORIENTATION EFFECTS:

Crack Lengths For Four Orientations

1 Week at 50 °C and 100% Relative Humidity

No discernible effects of specimen orientation on crack length



CURRENT FOCUS:

Bond Line Thickness Effects

- Create multiple bond line thicknesses
 - Thickness gradient across panel
 - Thickness differences within multiple panels
- Investigate bond line thickness effects on:
 - Initial crack length
 - Crack growth during exposure
 - Failure mode

- Several areas of improvement to ASTM 3762 have been identified
- Experimental program underway to provide results required to support test method revisions
- Several key user groups of ASTM D 3762 are part of standard revision process
- Encouraging response from ASTM Committee D14 on Adhesives
 - Presentations by Pl's at last two ASTM D14 Meetings
 - PI Adams leading Task Group to revise standard
 - Next ASTM D14 meeting: April 17th, Phoenix AZ

BENEFITS TO AVIATION

- Improved adhesive bond durability test method
- Improved acceptance criteria
- Method for assessing the durability of adhesively bonded aircraft structures
- Dissemination of research results through FAA technical reports and journal publications

Thank you for your attention!

Questions?

Acenter of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE