

Improving Adhesive Bonding of Composites Through Surface Characterization

Brian Flinn, Rita Johnson, Marc Staiger, Erik Engstrom

JAMS 2016 Technical Review March 22-23, 2016

Improving Adhesive Bonding of Composites

- Principal Investigator and Researchers
 - Brian Flinn (PI)
 - Rita Johnson UW MSE/Boeing
 - Marc Seiger (UW MSE)
 - Erik Engstrom (UW MSE)
- FAA Technical Monitor
 - Curtis Davis
- Other FAA Personnel
 - Larry Illecwicz
 - Cindy Ashforth
- Industry Participation
 - Epic Aircraft
 - The Boeing Company
 - Textron CECAM

Two projects will presented today

1. Surface Characterization using Inverse Gas Chromatography (iGC) Methods

2. Amine Blush in Epoxy Paste Adhesives

Surface Characterization using iGC Methods

- Motivation and Key Issues
 - Most important step for bonding is surface preparation
 - Inspect the surface prior to bonding to ensure proper surface preparation
- Objective
 - Develop quality assurance (QA) techniques for surface preparation
- Approach
 - Investigate surface preparations, process variables
 - Compare with Contact Angle Data

Surface Energy Review

- □ SE \rightarrow thermodynamic adhesion and cohesion
- Affects wettability of a material
 - Ability of liquid to spread over surface-required for bonding

Contact Angle Methodology – Surface Energy

- Adhesive must wet substrate controlled by surface energy
- Surface energy calculated from Owens-Wendt model ($\gamma_{tot}=\gamma^p+\gamma^d)$
 - Four fluids: deionized water (DI H₂O), diiodomethane (DIM), ethylene glycol (EG), and glycerol (GLY)
- Wettability envelopes: 2D representation of surface energy^[14]

Drop application: dispense drop, raise surface

Side-view of drop as viewed from goniometer camera

iGC Overview

- Technique to characterize physicochemical properties of materials
- Carrier gas transports probe molecule (adsorptive) over composite material (absorbent)
- Retention time \rightarrow retention volume \rightarrow surface energy → Thermodynamic work adhesion and cohesion
- Ideal for powders, fibers, nano particles, granules, films, semi-solids

Provides surface heterogeneity data

ANALYTICAL GAS CHROMATOGRAPHY

Surface Energy: iGC vs. Contact Angle (CA)

Contact Angle (CA)

- Small drops (1 ml) of 3-5 known liquids placed on surface
- "Average" surface energy calculated over small area
- Can be affected by surface texture (non-circular drops)
- Quick, inexpensive, can be portable
- Inverse Gas Chromotography (iGC)
 - 8-10 Known gases flow over surface (1"X10")
 - More information obtained (higher fidelity data)
 - Distribution of surface energy
 - Larger area sampled
 - Greater sensitivity to subtle changes
 - Expensive equipment, skilled operator

Experimental Overview

- Large volume of contact angle data, surface energies and bond quality from previous years
 - Surface Preparations (peel ply, abrasion, plasma)
 - Adherends (250 F and 350 F cure epoxies)
 - Adhesives (paste and film)
- Repeat measurements using iGC
- Compare surface energies iGC vs CA
- Validate iGC method
- Explore unknowns and bonding mysteries

Repeatability: Polyester Peel Ply Trial Comparison

Trial Comparision

Transport Aircraft Structure

Peel Ply Comparison: Nylon vs Polyester

Acid-Base Surface Energy Profile

Dispersive Surface Energy Profile

Peel Ply Comparison: Nylon vs Polyester

CA Peel Ply Comparison: Nylon vs Polyester

Substrate - Peel ply *	γ _d	γ _p	γ_{tot}
Cytec970 – 60001 polyester	55.5	1.7	57.2
Cytec970 – 51789 nylon	22.0	25.8	47.8
Cytec970 – EA9895 polyester/epoxy	40.4	8.6	49.0
Cytec970 – nylon/epoxy	20.1	23.9	44.0
Toray 3631 – 60001 polyester	53.8	1.2	55.0
Toray 3631 – 51789 nylon	22.8	19.8	42.6
Toray 3631 – EA9895 polyester/epoxy	57.4	0.9	58.3
Toray 3631 – nylon/epoxy	16.5	27.8	44.3
(Adhesive) 3M AF555 uncured	31.6	8.9	40.5
(Adhesive) Cytec MB1515-3 uncured	29.7	3.1	32.8

Similar to results from contact angle measurements as iGC

Next Steps: Panel/Test # Adherend (Fabric) Peel Ply **Cure Dwell Post Cure Surf Prep** Compare polyester peel ply data with contact angle measurements **Begin test matrix**

with various surface preparation methods.

1	BIVIS8-276	BIVIS8-308 Type III	2nr	N/A
2	BMS8-276	BMS8-308 Type IV	2hr	N/A
3	BMS8-276	BMS8-308 Type IV	2hr	Plasma
4	BMS8-276	Nylon	2hr	N/A
5	BMS8-276	SRB	2hr	N/A
6	BMS8-276	BMS8-308 Type III	6hr	N/A
7	BMS8-276	BMS8-308 Type IV	6hr	N/A
8	BMS8-276	BMS8-308 Type IV	6hr	Plasma
9	BMS8-276	N/A	2hr	Orbital Sand of Tool Side
10	BMS8-276	N/A	2hr	Grit Blast of Tool Side
11	BMS8-276	N/A	2hr	N/A
12	BMS8-256	BMS8-308 Type III	2hr	N/A
13	BMS8-256	BMS8-308 Type IV	2hr	N/A
14	BMS8-256	BMS8-403 Class 1	2hr	N/A
15	BMS8-256	BMS8-139	2hr	N/A
16	BMS8-256	BMS8-308 Type III	6hr	N/A
17	BMS8-256	BMS8-308 Type IV	6hr	N/A
18	BMS8-256	BMS8-403 Class 1	6hr	N/A
19	BMS8-256	BMS8-139	6hr	N/A
20	BMS8-256	N/A	2hr	Orbital Sand of Tool Side
21	BMS8-256	N/A	2hr	Grit Blast of Tool Side
22	BMS8-256	N/A	2hr	N/A

Looking Forward

Surface Characterization using iGC Methods

- Benefit to Aviation
 - Better understanding of surface prep.
 - Guide development of QA methods for surface prep.
 - Greater confidence in adhesive bonds
- Future needs
 - Surface energy (wetting) vs. bond quality
 - Surface energy at cure temperature
 - QA method to ensure proper surface for bonding
 - Applicability to other composite and adhesive systems
 - Model to guide bonding based on characterization, surface prep. and material properties

Amine Blush in Epoxy Adhesives

- Motivation and Key Issues
 - Amine blush causes poor quality bonds
 - How to detect and quantify amine blush/bloom
- Objective
 - Develop QA techniques for paste adhesives
- Approach
 - Identify key parameters for amine blush/bloom
 - Characterize adhesive surface after various exposures
 - Quantify amine blush/bloom
 - Create QA strategies to mitigate formation

Amine Blush and Amine Bloom

- Present in epoxy-amine adhesive systems
 - Surface is greasy
 - Then turns powdery and white
 - Causes poor adhesion
- Formation of carbamates and carbonates
- Critical Parameters
 - Out time
 - Temperature
 - Relative Humidity
 - Atmospheric CO₂

Amine blush in Loctite 9360

Amine Cured Epoxy - Chemistry

Amine

Epoxide

Epoxy/amine adhesive reaction

Amine Blush Formation

Can form on surface of uncured epoxies - moisture and CO₂

- 1. Primary + Secondary Amines react on surface: $CO_2 + H_2O \rightarrow H_2CO_3$
- 2. Ammonium Carbamate + Tertiary Amines: $H_2CO_3 + \sim RNH2 \rightarrow \sim RNHCOOH + H_2O$
- 3. Ammonium Bicarbonate: $\sim RNHCOOH + RNH_2 \rightarrow RNH_3^+ OCONHR$

Causes:

- Incomplete cure
- Surface tackiness
- Poor surface adhesion

Amine blush in Loctite 9360

Experimental Overview

Investigate the effect of amine blush on bonding and corroborate with surface characterization

- Condition specimens & witness coupons:
 - Humidity: 35% (Low), 80% (High)
 - Temperature: 65°F (Low), 90°F (High)
 - Out Time: 30 mins (Low), 60 mins (High)
- Measure Bond Quality
 - Lap Shear (ASTM D3165)→ shear strength
 - Dual Cantilever Beam (DCB) (ASTM D5228)→ fracture toughness
- Identify and quantify amine blush via FTIR
 - Witness coupons

Materials and Methods

- Toray T800/3090 Laminates
 - Lap shear: 0°/+45°/-45°/0°
 - DCB: unidirectional
- Surface preparation
 - Mechanical abrasion
 - Solvent wipe and flash off
- Bonding
 - Loctite 9360 adhesive
 - Apply adhesive on both adherends
 - Exposed to controlled atmospheres (T & RH)
 - Bagged and cured 25 psi, 90 F
 - Bondline thickness 0.020-0.030"

Amine Blush Production

Visual Test Results- Amine Blush

Henkel EA 9360

Detecting Amine Blush-FTIR

- Carbamate ☆
 - 1100 cm⁻¹ C=O symmetric stretching
 - 1400 cm⁻¹ C-N stretching
 - 1550 cm⁻¹ C=O asymmetric stretching
- Bicarbonate ◊
 - 1350 cm⁻¹ C-O symmetric stretching
 - 1450 cm⁻¹ asymmetric stretching

FTIR Spectra of carbamate and bicarbonate

Carbamate

R

Bicarbonate

FTIR Results-Humidity Exposure

Carbamate and carbonate peaks develop with exposure

FITR Results

- Spectra from the control matches well with LH-LT.
- As Temp and %RH increase the specrta show a shift at the 1330, 1450 and 1550cm-1 absorbance.
- Evidence of carbamate and amine groups on the surface.
- Spectral difference correlates with the difference in surface gloss

Sample ID:

HT - High Temp (90F)

- LT Low Temperature (65F)
- **LH** Low Humidity (65%RH)

HH – High Humidity (80%RH)

60 – 60 min exposure

Control - No exposure

C:\Program Files\OPUS 65\MEAS\Amine Blush 2016\9360\neat 9630 - thin edge bit trial 2.0 blank - trial 2	25/02/2016
C:\Program Files\OPUS_65\MEAS\Amine Blush 2016\LH-LT-60-2\LH-LT-60-2-3.0 tests prepred	08/03/2016
C:\Program Files\OPUS 65\MEAS\Amine Blush 2016\LH-HT-60-2\LH-HT-60-2-3.0 tests prepreg	09/03/2016
C:\Program Files\OPUS 65\MEAS\Amine Blush 2016\HH-LT-60-2\HH-LT-60-2-9.0 tests prepreg	10/03/2016
C:\Program Files\OPUS 65\MEAS\Amine Blush 2016\HH-HT-60-2\HH-HT-60-2-4.0 tests prepreg	10/03/2016

Bond Quality – Lap Shear

- ASTM D3165
- 10" x 1" specimen
- 1" overlap

Lap shear schematic. Top = birds eye. Bottom = profile

Preliminary Lap Shear Results

	Condition A		Avg. Shear	Standard	Coefficient	
Temp (°F)	Humidity (%)	Time (min)	Strength (psi)	Deviation (psi)	Variation (%)	
65	35	30	1090.81	67.73	6.20	
90	35	30	1431.17	110.84	7.74	
<u>65</u>	<u>80</u>	<u>60</u>	<u>376.91</u>	<u>79.92</u>	<u>21.20</u>	
90	80	60	1275.43	85.09	6.67	

Interlaminar ave>1000psi Cohesive ave= 376 psi

- Decreases shear strength by 65-75%
- Increases variability (COV)
- Amine blush changes failure mode

Lap Shear Results – Failure Modes

Low Temp, Low Humidity

High Temp, Low Humidity

Low Temp, High Humidity

High Temp, High Humidity

Summary of Current Results

- Humidity and out time have the largest impact on amine bloom/blush formation
- Amine blush severely decreases shear strength
- FTIR results do corroborate this pattern
- Unclear why High Humidity-High Temp samples have high strength
- Test remaining DOE conditions

Future Work

- Repeatability testing for lap shear and FTIR
- DCB testing
- Increase complexity for DOE
 - More temperatures, humidity's, out times
 - More adhesives
- Mitigation methods
- Investigate other blush detection methods
 - Dielectric spectroscopy
 - Fluorescence spectroscopy

Looking forward- Amine Blush

- Benefit to Aviation
 - Conditions that can create weak bonds
 - Safer, more reliable bonds
- Future needs
 - QA methods to detect amine blush
 - Methods to mitigate amine blush

Acknowledgements

- FAA, JAMS, AMTAS
- Boeing Company
 - Paul Vahey, Paul Shelley, John Osborn, Kay Blohowiak

TEXTRON

- Epic Aircraft
 - David Pate
- Textron Aircraft
 - Shannon Jones
- Precision Fabrics Group
- Airtech International
- UW MSE

ENGINEERING

S.

BOEING

UNIVERSITY of WASHINGTON

Comments and questions are welcomed

A center of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

Contact Angle Goniometry

- Surface-specific, typically measures outermost 5 Å of a material
- The surface free energies (γ_{SV}, γ_{LV}, γ_{SL}) and the Young's contact angle (Θ_Y) are interrelated

 $\cos \Theta_{\rm Y} = (\gamma_{\rm SV} - \gamma_{\rm SL}) / \gamma_{\rm LV}$

Figure 1. Graphical vector representation of sessile drop parameters: Contact angles can be converted Θ_Y, Young's contact angle; γ_{sv}, solid-vapor interfacial free energy; into surface energy components γ_{Lv}, liquid-vapor interfacial free energy; γ_{st}, solid-liquid interfacial using the Young-van OSS and Lewis acid-base equations

$$\gamma_L^t (1 + \cos \theta) = 2 \left(\sqrt{\gamma_S^{LW} \gamma_L^{LW}} + \sqrt{\gamma_S^+ \gamma_L^-} + \sqrt{\gamma_S^- \gamma_L^+} \right)$$
$$\gamma^{AB} = 2 \sqrt{\gamma^+ \gamma^-}$$

Contact Angle Goniometry

- Goniometry measures polar and dispersive components for SE
- **iGC** measures SE with Lewis acid-base components
- Contact Angles can be compared to the iGC methods using the following values:

Liquid		γLd	γ ₁ +	
DI Water	72.8	21.8	25.5	25.5
Ethylene Glycol	29	19	1.92	47
Glycerol	64	42	3.92	57.4
Diiodomethane	50.8	50.8	0	0
DMSO	44	36	0.5	32
Formamide	58	39	2.28	39.6

Source:

Handbook of Adhesives and Sealants: General Knowledge, Application of Adhesives, New **Curing Techniques**

Contact Angle Goniometry (3/3)

 Use three known contact angle measurements A, B, C with known LW, acidic and basic components to calculate SE_{solid}

$$\begin{split} W_{12A} &= \gamma_{1A} \left(1 + \cos \theta_A \right) = 2 \left(\gamma_{1A}^{LW} \gamma_2^{LW} \right)^{1/2} + 2 \left(\gamma_{1A}^{+} \gamma_2^{-} \right)^{1/2} + 2 \left(\gamma_{1A}^{-} \gamma_2^{+} \right)^{1/2} \\ W_{12B} &= \gamma_{1B} \left(1 + \cos \theta_B \right) = 2 \left(\gamma_{1B}^{LW} \gamma_2^{LW} \right)^{1/2} + 2 \left(\gamma_{1B}^{+} \gamma_2^{-} \right)^{1/2} + 2 \left(\gamma_{1B}^{-} \gamma_2^{+} \right)^{1/2} \\ W_{12C} &= \gamma_{1C} \left(1 + \cos \theta_C \right) = 2 \left(\gamma_{1C}^{LW} \gamma_2^{LW} \right)^{1/2} + 2 \left(\gamma_{1C}^{+} \gamma_2^{-} \right)^{1/2} + 2 \left(\gamma_{1C}^{-} \gamma_2^{+} \right)^{1/2} \\ \mathbf{a} = [(\gamma_2^{LW})^{1/2} \quad (\gamma_2^{-})^{1/2} \quad (\gamma_2^{+})^{1/2}] \end{split}$$

$$\boldsymbol{\alpha} = \begin{bmatrix} \frac{(\gamma_{1A}^{\ LW})^{1/2}}{\gamma_{1A}} & \frac{(\gamma_{1A}^{\ +})^{1/2}}{\gamma_{1A}} & \frac{(\gamma_{1A}^{\ -})^{1/2}}{\gamma_{1A}} \\ \frac{(\gamma_{1B}^{\ LW})^{1/2}}{\gamma_{1B}} & \frac{(\gamma_{1B}^{\ +})^{1/2}}{\gamma_{1B}} & \frac{(\gamma_{1B}^{\ -})^{1/2}}{\gamma_{1B}} \\ \frac{(\gamma_{1C}^{\ LW})^{1/2}}{\gamma_{1C}} & \frac{(\gamma_{1C}^{\ +})^{1/2}}{\gamma_{1C}} & \frac{(\gamma_{1C}^{\ -})^{1/2}}{\gamma_{1C}} \end{bmatrix}$$

$$\beta = \begin{bmatrix} (1 + \cos(\theta_{A}))/2 \\ (1 + \cos(\theta_{B}))/2 \\ (1 + \cos(\theta_{C}))/2 \end{bmatrix}$$

by:

The solid surface energy is given