

Durability of adhesive bonded joints in aerospace structures

Lloyd V Smith Washington State University

JAMS 2018 Technical Review May 23-24, 2018

Durability of adhesive bonded joints in aerospace structures

- Principal Investigators & Researchers
 - Lloyd Smith
 - Preetam Mohapatra, Yi Chen, Trevor Charest
- FAA Technical Monitor

– Ahmet Oztekin

- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - The Boeing Company: Will Grace, Peter VanVoast, Kay Blohowiak

Durability of bonded aircraft structure

- Motivation and Key Issues
 - Adhesive bonding is a key path towards reduced weight in aerospace structures.
 - Certification requirements for bonded structures are not well defined.
- Objective
 - Describe plastic adhesive response.
 - Develop time-dependent adhesive models.
- Approach
 - Experiments designed to clarify constitutive relations.
 - Develop FEA Models of adhesive bonds.
 - Compare models with experiments that are unlike constitutive tests.

Durability of adhesive bonded joints in aerospace structures

Plasticity : Hardening Rule: Challenges

Advanced Materials in

Transport Aircraft Structure

Plasticity : Hardening Rule: in Shear

- Initial size : $\mathbf{V}_{o} = 2\tau_{A}$
- Kinematic: $\mathbf{V}_{\mathbf{k}} = \tau_B \tau_C = 2\tau_A$
- Isotropic: $\mathbf{Y}_{\mathbf{I}} = \tau_B \tau_E = 2\tau_B$
- Combined: $2\tau_A < \mathbf{I}_a = (\tau_B \tau_D) < 2\tau_B$

CECAN

• $\mathbf{k} = \frac{\tau_B + \tau_D}{2(\tau_B - \tau_A)}$

Schematic presentation of cyclic shear loading

- tensile yield (nTY)
- tensile peak (nTP)
- compressive yield (ncy)
- compressive peak (ncp)

Size of yield surface at Nth cycle: $n_{TP} - n_{CY}$

Plasticity : Hardening Rule: Testing

Cyclic testing of scarf joint on an Instron to quantify adhesive hardening

Image analysis software (Vic

3D) used to analyze speckle

Scarf fixture for tensioncompression testing and assembly

Plasticity : Hardening Rule: Quantification

$$Y_k = \tau_B - \tau_C = 43.1$$

What we found: kinematic behavior dominated hardening mechanism of tough adhesive.

Plasticity : Hardening Rule: Quantification

$$Y_k = \tau_B - \tau_C = 43.1, 39.6$$

- 0.2% offset criterion used to determine yield point
- Y_k ~ 43.1 MPa -> 39.6 MPa

What we found: Tough adhesive demonstrated kinematic hardening behavior

Plasticity : Hardening Rule: Quantification

Sequential position of yield surface

0.2% offset criterion used to determine yield point 80.18 (isotropic) > 60.36 (actual size) > 58.28 (kinematic)

k = 91%

What we found:

Standard adhesive demonstrated combined hardening

Plasticity: Yield Criterion: Challenges

Schematic yield surface in normal-normal stress state: Solid line = von Mises (typically used for metals) Dotted line = Drucker-Prager (typically used for rocks, concrete, soil) •

- Adhesive joints don't soften at yield in compression.
 - Consider <mark>normal-shear</mark>

Plasticity: Yield Criterion: Mixed-Mode Fixture Design

Arcan vs.TAST (ASTM D 5656)

- More uniform stress state
- Higher Shear/peel stress ratio

12

Plasticity: Yield Criterion: Testing in Normal-Shear

- Designed our own Arcan fixture for conducting biaxial testing
- Testing at 45 degree angle in progress on an Instron load frame

Image analysis software (Vic 3D) used to analyze speckle images for strain calculation

Normal stress: $\sigma_{w} = \frac{F \sin \theta}{A}$ Shear stress: $\tau_{u'v'} = \frac{F \cos \theta}{A}$

Plasticity: Yield Criterion: Test Results

What we found:

von Mises: best fit

Plasticity: Yield Criterion: Test Results

What we found:

von Mises: generally best fit

Plasticity: Numerical Modeling: Tensile Input Properties

Schematic butt joint with dimensions, load applied in the X direction

Butt joint being tested on an Instron load frame

Plasticity: Numerical Modeling: Tensile Input Properties

Plasticity: Numerical Modeling: Shear Joints

Testing on Instron

Standard T adhesive ad

Tough

Tough adhesive

FEA

Plasticity: Validation of Yield Criterion (lap shear coupon)

What we found: use of mixed mode lap-shear joint

- von Mises criterion better explains adhesive yielding
- Adhesive yielding is not sensitive to hydrostatic pressure.

Plasticity: Validation of Hardening Rule

Plasticity: Numerical Modeling: Validation of Hardening Rule

Plasticity: Numerical Modeling: Validation of Hardening Rule

Plasticity: Numerical Modeling: Validation of Hardening Rule

Plasticity : Summary

- Assuming plastic properties can lead to error in numerical modeling.
 - Little has been done to characterize adhesive plastic response
- Arcan fixture was effecting in creating uniform shear with minimal peel stress.
- Adhesives considered here followed von Mises yielding
 - not influenced by hydrostatic pressure.
- Adhesives in this work tended to follow kinematic hardening
 - Isotropic hardening is commonly assumed
 - > Nonlinear kinematic hardening governed the tough adhesive behavior.
 - > Nonlinear combined hardening (90% kinematic) described standard adhesive.

Viscoelasticity

- Effect of prior loadings on adhesive
 - Modulus
 - Strength
 - Failure strain

Approach- strain in scarf joints & PRF model

Strain detect for scarf joints

- For scarf joints, extensometer is used to get the displacement u1 & u2 at two points;
- Δ= u₂ -u₁, it can be seen as an engineering strain as well as the displacement.
 In this presentation, the strain for scarf joints is Δ.
- $slope = \frac{load}{\Delta}$ is used as a system stiffness since the shear strain of the adhesive can not be obtained by extensometer.

Parallel Rheological Framework

- Hyperelastic & 3-branch Viscoelastic networks
- Viscous part:

$$\epsilon^{cr} = (Aq^n [(m+1)\epsilon^{cr}]^m)^{\frac{1}{m+1}}$$

Approach- Failure Test

Failure Comparison between Scarf Joints with and without Prior Load

Approach- Failure Test

Failure Comparison between Scarf Joints with and without Prior Load

Slope Changes at Loading Stage

EA9696 Scarf Joints Ratcheting Test at 80% USS

- Coupon was loaded for 8 cycles without failure;
- Another coupon failed after 20th cycle;
- The stiffness at the fist cycle loading is softer than remaining cycles;
- Most of the stiffness change is due to time dependence.

Slope Changes at Loading Stage

• EA9696 Scarf Joints: Ratcheting Test with Recovery Per Cycle at 80% USS

• Recovery between load cycles reduces the difference in stiffness between cycles.

Slope Changes at Loading Stage

• FM300-2 Scarf Joints Ratcheting Test at 80% USS

• FM300-2 is more linear (constant slope) than EA9696

Slope Changes at Loading Stage

• FM300-2 Scarf Joints: Ratcheting Test with Recovery Per Cycle at 80% USS

• Recovery caused some scatter in stiffness at low load, otherwise had little effect on stiffness.

Approach- Parallel Rheological Framework in ABAQUS

Bulk resin

Bulk resin

• For ratcheting at 80% UTS, the cycle compliance is too high.

Bulk resin

Scarf Joints

EA9696				FM300-2			
Bulk		scarf		Bulk		scarf	
UTS	yield stress	USS	yield stress	UTS	yield stress	USS	yield stress
(psi)	% of UTS	(psi)	% of USS	(psi)	% of UTS	(psi)	% of USS
6500	92%	6000	75%	8300	86%	6100	98%

Scarf Joints

• PRF doesn't accumulate strain with cycles for scarf joints.

Viscoelasticity : Summary

- Prior loading has a small effect on subsequent adhesive material response.
 - A reduction in failure strain and strain hardening was only observed with prior loading above the yield strength
- Repeated loading had little effect on adhesive modulus
 - > Tension/compression work is ongoing
- Repeated loading found generally good agreement with experiment for tensile, bulk coupon tests
 - Agreement reduced in shear ratcheting tests

Looking forward

- Benefit to Aviation
 - Methodology to characterize adhesive plasticity
 - Improved models of adhesive plastic response
 - Adhesive ratcheting behavior
- Future needs
 - Numeric models of time dependent behavior
 - Strain measurement in cyclic tests (scarf joints)
 - Time dependence of cyclic behavior

