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Durability of bonded aircraft structure

• Motivation and Key Issues 
– Adhesive bonding is a key path towards reduced weight in aerospace 

structures.
– Certification requirements for bonded structures are not well defined.

• Objective
– Describe plastic adhesive response.
– Develop time-dependent adhesive models.

• Approach
– Experiments designed to clarify constitutive relations.
– Develop FEA Models of adhesive bonds.
– Compare models with experiments that are unlike constitutive tests.



Nonlinearity in 
Bonded Joints

Time 
Dependence

Tension (closed 
form) 2. Ratcheting, experiment

1. Creep, non-linear response

Shear (FEA)
3. Creep, model development

4. Ratcheting, model application

Plasticity

Yield criterion 1. Influence of yield criteria

2. Biaxial tests (Arcan)

Hardening rule 3. Cyclic tests

4. FEA model
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Durability of adhesive bonded joints in 
aerospace structures
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Plasticity : Hardening Rule: Challenges

Ref: Muransky O. et al [Metal Plasticity]
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What we found:
To quantify hardening in thin film 
adhesives we need to load and unload 
in a shear stress state 
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Plasticity : Hardening Rule: in Shear

Schematic presentation of cyclic shear 
loading
• tensile yield (nTY)
• tensile peak (nTP)
• compressive yield (nCY)
• compressive peak (nCP)
Size of yield surface at Nth cycle: !"# − !%&

• Initial size : '( = 2+,
• Kinematic:  '- = +. − +% = 2+,
• Isotropic: '/ = +. − +0 = 2+.
• Combined: 2+, < '2 = (+. − +4) < 2+.
• 6 = 7897:

);(78 <7=
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Plasticity : Hardening Rule: Testing

!"# =
%&"'#( − *+,- .−/

0
/

*+,- =
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Scarf fixture for tension-
compression testing and 

assembly

Cyclic testing of scarf joint 
on an Instron to quantify 

adhesive hardening 

Image analysis software (Vic 
3D) used to analyze speckle 
images for strain calculation

Schematic locations of 
points tracked to 
calculate strain



Plasticity : Hardening Rule: Quantification

§ 0.2% offset criterion used to 
determine yield point

§ Yk ~ 43.1 MPa

8

What we found: kinematic behavior dominated hardening mechanism of tough 
adhesive.
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§ 0.2% offset criterion used to 
determine yield point

§ Yk ~ 43.1 MPa -> 39.6 MPa

What we found: Tough adhesive demonstrated kinematic hardening behavior
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Plasticity : Hardening Rule: Quantification

Tough Adhesive



§ 0.2% offset criterion used to determine yield point
§ 80.18 (isotropic) > 60.36 (actual size) > 58.28 (kinematic)
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What we found: 

Standard adhesive demonstrated combined hardening

! = 91%

(91% kinematic & 9% isotropic)

Plasticity : Hardening Rule: Quantification
Standard Adhesive Standard Adhesive



Plasticity: Yield Criterion: Challenges 

Schematic yield surface in normal-normal stress state: 
Solid line = von Mises (typically used for metals)
Dotted line = Drucker-Prager (typically used for rocks, concrete, soil)

• Adhesive joints don’t soften at yield in 
compression.

• Consider normal-shear

Normal 
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1

Arcan vs.TAST (ASTM D 5656)
• More uniform stress state
• Higher Shear/peel stress ratio
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Plasticity: Yield Criterion: Mixed-Mode Fixture Design 



Shear stress: !"#$% = '()*+
,

Normal stress: -"% = '*./+
,• Designed our own Arcan fixture for 

conducting biaxial testing
• Testing at 45 degree angle in 

progress on an Instron load frame

Image analysis software (Vic 3D) used to 
analyze speckle images for strain calculation

Plasticity: Yield Criterion: Testing in Normal-Shear
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What we found:
von Mises: best fit

Plasticity: Yield Criterion: Test Results 

von Mises
Drucker Prager
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Plasticity: Yield Criterion: Test Results 
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Drucker Prager, fit
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Plasticity: Numerical Modeling: Tensile Input Properties 
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Plasticity: Numerical Modeling: Shear Joints

Testing on
Instron

Tough 
adhesive

Standard
adhesive 

Standard
adhesive 

Tough 
adhesive

Testing on
Instron

FEA

FEA



What we found: use of mixed mode lap-shear joint

• von Mises criterion better explains adhesive yielding

• Adhesive yielding is not sensitive to hydrostatic pressure.
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Plasticity: Validation of Hardening Rule



0
5

10
15
20

25
30
35

40
45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

τ[
M

Pa
]

γ

Tough-Scarf

Eq . 2
Eq . 4
Ex pe rim en t

0
5

10
15
20

25
30
35
40
45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

τ[
M

Pa
]

γ

Tough-Lap Shear

Eq . 2
Eq . 4
Ex pe rim en t

0
5

10

15
20

25
30

35

40
45

0 0.0 2 0.0 4 0.0 6 0.0 8 0.1

τ[
M

Pa
]

γ

Standard - Scarf

Eq . 2
Eq . 4
Ex pe rim en t

0

5
10

15
20

25

30
35

40

45

0 0.0 5 0.1 0.1 5 0.2

τ[
M

Pa
]

γ

Standard - Lap Shear

Eq . 2
Eq . 4
Ex pe rim en t

Linear	Isotropic
Linear	Kinematic

Plasticity: Numerical Modeling: Validation of Hardening Rule

Linear	Isotropic
Linear	Kinematic

Linear	Isotropic
Linear	Kinematic

Linear	Isotropic
Linear	Kinematic



0
5

10

15
20
25
30
35
40
45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

τ[
M

Pa
]

γ

Tough-Scarf

Eq . 3
Eq . 5
Ex pe rim en t

0
5

10
15
20
25
30
35
40
45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

τ[
M

Pa
]

γ

Tough-Lap Shear

Eq . 3
Eq . 5
Ex pe rim en t

0
5

10
15
20
25
30
35
40
45

0 0.0 2 0.0 4 0.0 6 0.0 8 0.1

τ[
M

Pa
]

γ

Standard - Scarf

Eq . 3
Eq . 5
Ex pe rim en t

0
5

10
15
20
25
30
35
40
45

0 0.0 5 0.1 0.1 5 0.2

τ[
M

Pa
]

γ

Standard - Lap Shear

Eq . 3
Eq . 5
Ex pe rim en t

Plasticity: Numerical Modeling: Validation of Hardening Rule

Non-Linear	Isotropic
Non-Linear	Kinematic

Non-Linear	Isotropic
Non-Linear	Kinematic

Non-Linear	Isotropic
Non-Linear	Kinematic

Non-Linear	Isotropic
Non-Linear	Kinematic

underestimated fail 
strain for standard 
adhesive



0
5

10

15

20

25
30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

τ[
M

Pa
]

γ

Tough-Scarf

Eq . 5
Ex pe rim en t

0

5
10

15
20
25

30
35
40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

τ[
M

Pa
]

γ

Tough-Lap Shear

Eq . 5
Ex pe rim en t

0
5

10

15
20

25

30
35

40

45

0 0.0 2 0.0 4 0.0 6 0.0 8 0.1

τ[
M

Pa
]

γ

Standard - Scarf

Eq s 2  a n d 4

Eq s 3  a n d 5

Ex pe rim en t
0

5
10
15
20
25
30
35

40
45

0 0.0 5 0.1 0.1 5 0.2

τ[
M

Pa
]

γ

Standard - Lap Shear

Eq s. 2 a nd  4
Eq s. 3 a nd  5
Ex pe rim en t

Plasticity: Numerical Modeling: Validation of Hardening Rule

Non-Linear	Kinematic Non-Linear	Kinematic

Linear	Combined
Non-Linear	Conbined

Linear	Combined
Non-Linear	Conbined

Linear combined 
hardening 
underestimated 
experiment by 13% 
for standard 
adhesive 



Plasticity : Summary

Ø Assuming plastic properties can lead to error in numerical modeling.
Ø Little has been done to characterize adhesive plastic response

Ø Arcan fixture was effecting in creating uniform shear with minimal peel stress.
Ø Adhesives considered here followed von Mises yielding

Ø not influenced by hydrostatic pressure. 

Ø Adhesives in this work tended to follow kinematic hardening
Ø Isotropic hardening is commonly assumed
Ø Nonlinear kinematic hardening governed the tough adhesive behavior.
Ø Nonlinear combined hardening (90% kinematic) described standard adhesive.



Viscoelasticity

• Effect of prior loadings on adhesive
– Modulus
– Strength
– Failure strain

25
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Approach- strain in scarf joints & PRF model

1 inchu1 u2

• For scarf joints, extensometer is used to get the displacement u1 & u2 at two 
points;

• Δ= u2 -u1, it can be seen as an engineering strain as well as the displacement. 
In this presentation, the strain for scarf joints is Δ. 

• s"#$% = '()*
+ is used as a system stiffness since the shear strain of the 

adhesive can not be obtained by extensometer.

Load (lbf)constraint

Strain detect for scarf joints

• Hyperelastic & 3-branch Viscoelastic networks

• Viscous part:

, -. = /01 2 + 1 ,-. 5 6
576

Parallel Rheological Framework
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Approach- Failure Test
Failure Comparison between Scarf Joints with and without Prior Load 
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Approach- Failure Test
Failure Comparison between Scarf Joints with and without Prior Load 
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Approach- Cyclic Loading Test
Slope Changes at Loading Stage

• EA9696 Scarf Joints Ratcheting Test at 80% USS

• Coupon was loaded for 8 cycles without failure;
• Another coupon failed after 20th cycle;
• The stiffness at the fist cycle loading is softer than remaining cycles;
• Most of the stiffness change is due to time dependence.
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Approach- Cyclic Loading Test
Slope Changes at Loading Stage

• EA9696 Scarf Joints: Ratcheting Test with Recovery Per Cycle at 80% USS

• Recovery between load cycles reduces the difference in stiffness between cycles.
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Approach- Cyclic Loading Test
Slope Changes at Loading Stage

• FM300-2 Scarf Joints Ratcheting Test at 80% USS
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• FM300-2 is more linear (constant slope) than EA9696
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Approach- Cyclic Loading Test
Slope Changes at Loading Stage

• FM300-2 Scarf Joints: Ratcheting Test with Recovery Per Cycle at 80% USS

• Recovery caused some scatter in stiffness at low load, otherwise had little effect on stiffness.
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Approach- Parallel Rheological Framework in ABAQUS

FM300-2 
Creep

EA9696 
Creep

Bulk resin
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Approach- Parallel Rheological Framework FE Model

Bulk resin

Ratcheting

- 1, 000

0

1, 00 0

2, 00 0

3, 00 0

4, 00 0

5, 00 0

6, 00 0

7, 00 0

8, 00 0

9, 00 0

10 ,0 00

11 ,0 00

12 ,0 00

13 ,0 00

14 ,0 00

0 50 0 10 00 15 00 20 00

Re
co

ve
ry

 S
tra

in
 (μ

ε)

Recovery Time [s]

• For ratcheting at 80% UTS, the cycle compliance is too high. 

0

2, 00 0

4, 00 0

6, 00 0

8, 00 0

10 ,0 00

12 ,0 00

14 ,0 00

16 ,0 00

18 ,0 00

20 ,0 00

22 ,0 00

24 ,0 00

26 ,0 00

28 ,0 00

0 20 0 40 0 60 0 80 0 10 00

M
ax

 S
tra

in
 P

er
 C

yc
le

 (μ
ε)

Cycle

20 %- te st 20 %- PR F 20 %- SL M
50 %- te st 50 %- PR F 50 %- SL M
80 %- te st 80 %- PR F 80 %- SL M

EA9696 
Ratcheting



0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

0 20 0 40 0 60 0 80 0 10 00

M
ax

 S
tra

in
 P

er
 C

yc
le

 (μ
ε)

Cycle

20 %- te st 20 %- PR F 20 %- SL M
50 %- te st 50 %- PR F 50 %- SL M
80 %- te st 80 %- PR F 80 %- SL M

36

Approach- Parallel Rheological Framework FE Model

FM300-2 
Ratcheting

Bulk resin

Ratcheting
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Approach- Parallel Rheological Framework FE Model
Scarf Joints

Ratcheting
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Approach- Parallel Rheological Framework FE Model
Scarf Joints

Ratcheting

FM300-2 
Ratcheting

EA9696 
Ratcheting

• PRF doesn’t accumulate strain with cycles for scarf joints.



Viscoelasticity : Summary

Ø Prior loading has a small effect on subsequent adhesive material response.
Ø A reduction in failure strain and strain hardening was only observed with prior loading above the yield 

strength

Ø Repeated loading had little effect on adhesive modulus
Ø Tension/compression work is ongoing

Ø Repeated loading found generally good agreement with experiment for tensile, bulk 
coupon tests
Ø Agreement reduced in shear ratcheting tests
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Looking forward

• Benefit to Aviation
– Methodology to characterize adhesive plasticity
– Improved models of adhesive plastic response
– Adhesive ratcheting behavior

• Future needs
– Numeric models of time dependent behavior

§ Strain measurement in cyclic tests (scarf joints)
§ Time dependence of cyclic behavior
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