

Test Method Development for Environmental Durability of Composite Bonded Joints

Dan Adams, Larry DeVries Nicholas Brown, David Ricsi, Karli Gillette University of Utah

2014 Technical Review

FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams, Dr. Larry DeVries
 Graduate Student Researchers:
 Nicholas Brown
 - **David Ricsi**
- FAA Technical Monitor: Curt Davies
- Collaborators:

Boeing: Kay Blohowiak and Will Grace Air Force Research Laboratory: Jim Mazza

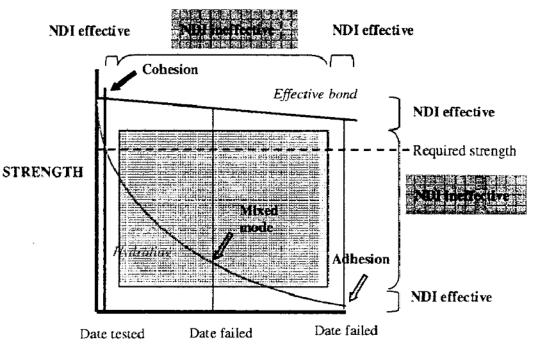
Outline

- Overview: Environmental durability testing of metal bonded joints
- Candidate environmental durability test methods for composite bonded joints
 - Static wedge test
 - Traveling wedge test
 - Back-bonded Double Cantilever Beam (DCB) test
- Current Status and Upcoming Work

Our Earlier Research Focus: Improving ASTM D3762 Metal Wedge Test

ASTM D 3762: "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

- Able to asses quality of bond quickly by causing rapid hydration of oxide layers
- Bonded aluminum cantilever beam loaded by forcing a wedge between adherends
- Wedge is retained in specimen
- Assembly placed into test environment
- Crack growth due to environmental exposure is measured following a prescribed time period



Background: Environmental Durability Degradation of Metal Bonds Due To Hydration

- Aluminum when exposed to oxygen forms an aluminum oxide surface layer 4AI + 3O₂ => 2Al₂O₃
- Aluminum oxide layer hydrates when exposed to water Al₂O₃ + 3H₂0 => 2Al(OH)₃

TIME

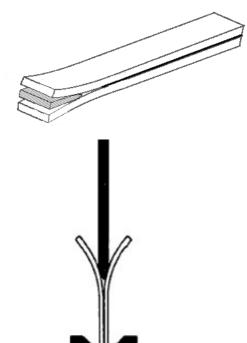
 Hydration causes bond degradation (metal adherends)

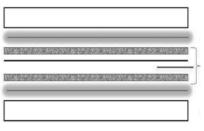
Davis and McGregor, "Assessing Adhesive Bond Failures: Mixed-Mode Bond Failures Explained" (2010)

Why Environmental Durability Tests of Composite Bonded Joints?

"There is currently no known mechanism similar to metal-bond hydration for composites"

- Ensure longer-term environmental durability of composite bonds
- Investigate effects of environmental exposure on performance of bonded composite joints
 - Failure mode: cohesion versus adhesion failure
 - Estimate fracture toughness reduction
- Assess effectiveness of surface preparation



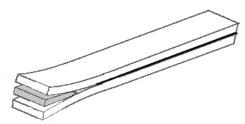

Environmental Durability Testing of Composites: Candidate Test Methods

• Static Wedge Crack Test

• Traveling Wedge Test

• Boeing Back-Bonded DCB

Van Voast et al., SAMPE 2013



Development of a Composite Wedge Test: Additional Complexities

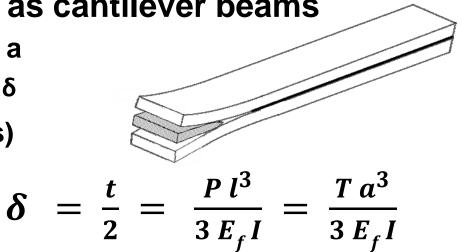
- Variable flexural stiffness of composite adherends
 - Environmental crack growth dependent on adherend flexural stiffness
 - Must be within an acceptable range Or

- Must tailor wedge thickness for composite adherends
- Restrictions in fiber orientation adjacent to bonded interface
- Failure in the composite laminate prior to failure in the adhesive or at the bondline

Estimate of Fracture Toughness, G_c Using Static Wedge Test

Consider composite adherends as cantilever beams

- Measured values of crack length, a
- Known value of beam deflection, δ


 $\delta = t/2$ (half of wedge thickness)

Tip deflection of a cantilever beam:

$$T = \frac{E_f b h^3 t}{8 a^3}$$

Strain energy due to bending: $U = \frac{1}{2}T \delta$

Strain energy release rate: $G_c = \frac{dU}{da}$

a = crack length

- t = wedge thickness
- h = adherend thickness
- **b** = specimen width
- T =load to deflect tip of beam
- **E**_f = flexural modulus
- *G_c* = fracture toughness

Effect of Flexural Stiffness of Composite Adherend on Crack Growth

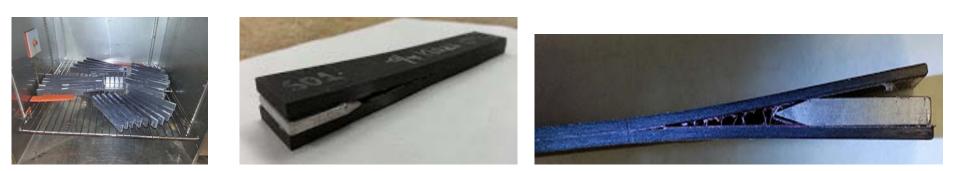
Wedge testing using with two different adherend thicknesses:

- Same composite material, same laminate (same E_f)
- Two laminate thicknesses: h = 0.06 in. and h = 0.12 in.
- Assume 50% reduction in G_c from 25 to 12.5 in-lb/in²

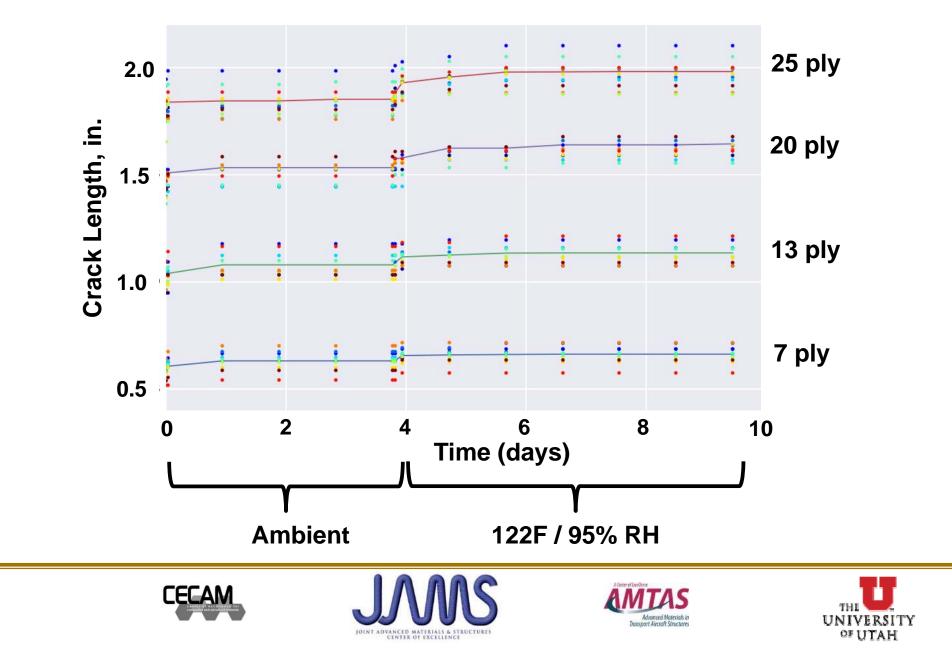
$$G_{c} = \frac{3 E_{f} t^{2} h^{3}}{16 a^{4}} \qquad \implies a = \sqrt[4]{\frac{3 E_{f} t^{2} h^{3}}{16 G_{c}}}$$
For h = 0.06 in.

$$a_{initial} = 0.879 \text{ in.}$$
For h = 0.12 in.

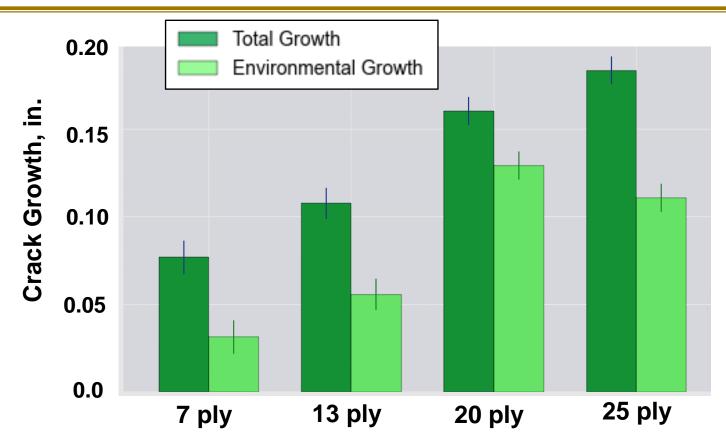
$$a_{initial} = 1.479 \text{ in.}$$


 $a_{final} = 1.046$ in. Total Growth = 0.17 in. $a_{initial} = 1.479$ in. $a_{final} = 1.759$ in. Total Growth = 0.28 in.

Changing adherend flexural stiffness changes...


- Initial crack length - Environmental crack growth

Effect of Adherend Flexural Stiffness: Experimental Investigation


- Unidirectional IM7/8552 carbon/epoxy adherends
- AF163-2K film adhesive
- Grit-blast & solvent wipe surface preparation
- Four adherend thicknesses to produce different E_f
 - Thick adherends: maximize crack growth (25 ply)
 - Match thickness of aluminum 1/8 in. adherends (20 ply)
 - Match EI of aluminum adherends (13 ply)
 - Thin adherends: minimize crack growth (7 ply)
- 122°F (50°C) and 95% humidity environment for 6 days

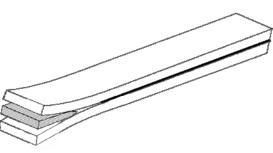
Static Wedge Test Results: Effects of Composite Adherend Thickness

Summary of Results: Effects of Composite Adherend Thickness

Increasing adherend thickness (and flexural modulus)...

- Increases crack length
- Increases crack growth

Composite Wedge Test Development: Current and Upcoming Work


- Investigate temperature sensitivity of test results
- Investigate "non-ideal" surface preparation conditions
 - Released and unreleased nylon peel ply
 - Grit blasted, hand sanded
 - Released and unreleased polyester peel ply
 - Grit blasted, hand sanded
- G_{1c} correlation between static wedge, travelling wedge and DCB tests

Traveling Wedge Test for Environmental Durability Assessment

- Longer version of static wedge specimen
- Moisture saturation of bonded composite specimen prior to testing
- Wedge driven continuously through adhesive bondline at elevated temperature using testing machine
- Assessment of relatively large bond area
- Can provide an estimate of G_c
- Limited prior usage/investigation for environmental durability assessment



Traveling Wedge Test: Test Methodology

- Moisture saturation of specimen prior to testing at elevated temperature
- Wedge insertion similar to static wedge test
- Record position of crosshead of test machine associated with initial wedge position in specimen
- Record crosshead displacement associated with prescribed increments of crack extension (5 mm)
- Determine crack length beyond wedge, a
- Calculate G_c as for static wedge test

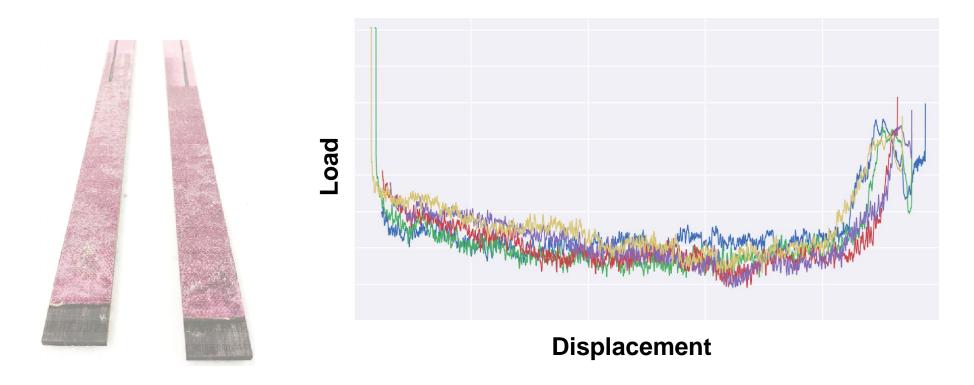
$$G_c = \frac{3 E_f t^2 h^3}{16 a^4}$$

Traveling Wedge Test: Initial Assessment

- Unidirectional IM7/8552 carbon/epoxy adherends
 - Thin adherends: (3 ply, 0.024 in.)
 - Preferred for shorter moisture saturation time
 - Of concern due to short crack length
 - Thick adherends: (20 ply, 0.144 in.)
 - More representative of static wedge and DCB specimens
 - Long moisture saturation time (reduced if "back-bonded")
- AF163-2K film adhesive

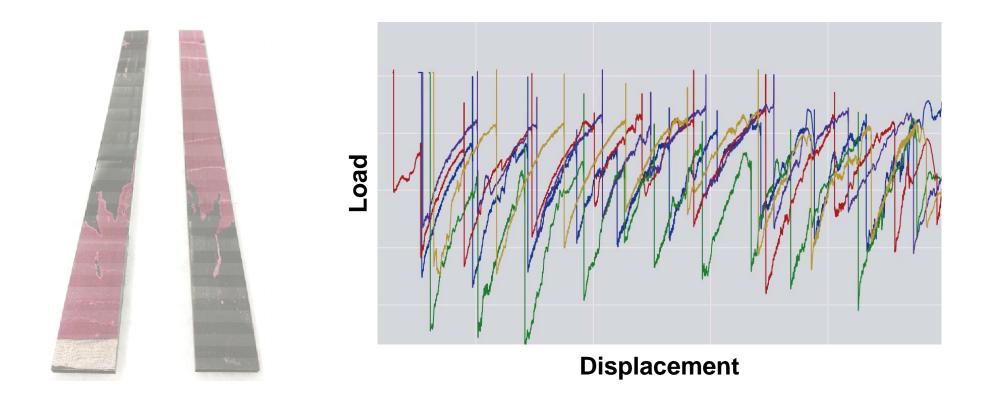
ΓΓΓΔΝ

- Two surface preparations investigated
 - "Ideal": Grit-blast & acetone wipe
 - "Non-ideal": Nylon peel ply



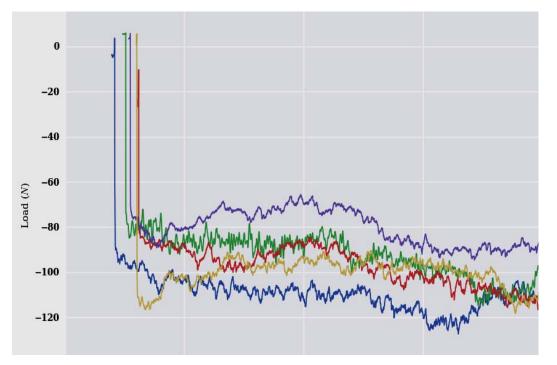
Traveling Wedge Test: Initial Results Using Thick Adherends

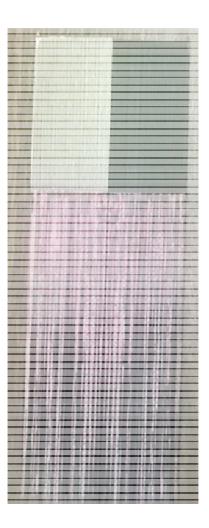
"Ideal" bond (grit blasted) at room temp/ambient conditions


- Cohesion failure
- Stable crack growth
- Repeatable results

Traveling Wedge Test: Initial Results Using Thick Adherends (Con'd)

"Non-Ideal" bond (Nylon peel ply) at room temp/ambient


- Adhesion failure
- "Stick-slip crack growth behavior

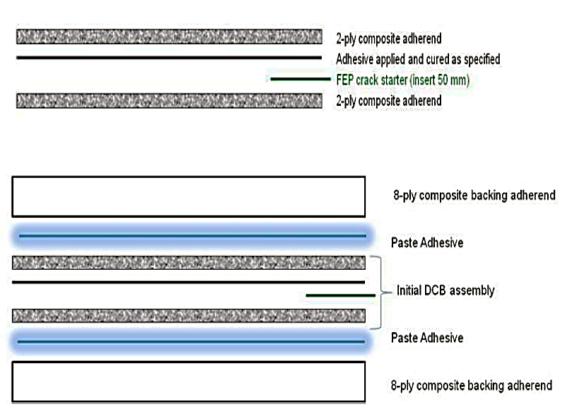

Traveling Wedge Test: Initial Results Using Thin Adherends

"Ideal" bond (grit blasted) at elevated temp/wet conditions

- Moisture saturation in ~3 weeks
- Tested at 122°F (50°C)
- Significant interlaminar failure

Traveling Wedge Test Assessment: Current and Upcoming Work

- Further evaluation of adherend thickness effects
- Testing of additional "non-ideal" surface preparations conditions
- Comparison of G_c estimates with static wedge, and back-bonded DCB tests



Environmental Durability Testing: Boeing Back-Bonded DCB Test

- Bond thin adherends with desired surface preparation and adhesive
- Moisture saturate thin bonded composite specimen
- Bond doubler panels to thin specimens to produce full DCB specimen thickness
- Test at elevated temperature conditions

Van Voast, Blohowiak, Osborne and Belcher, "Rapid Test Methods for Adhesives and Adhesion" (SAMPE 2013)

Boeing Back-Bonded DCB Test: Current and Upcoming Work

- Testing of "ideal" and "nonideal" surface conditions
- Investigate effects of test temperature
- Provide baseline G_c values for comparison with static wedge, and traveling wedge testing

Environmental Durability Testing of Composites: Summary of Candidate Test Methods

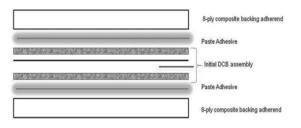
Static Wedge Crack Test

- Simple to perform
- Several tests performed concurrently
- Estimate Gc at both ambient and hot/wet conditions
- Extended time in environmental chamber
- Small bond area assessed

Traveling Wedge Test

- Relatively large bond area may be assessed
- Estimate Gc at hot/wet conditions
- Single specimen tested at a time
- Moderate to relatively long moisture conditioning

Boeing Back-Bonded DCB


- Accurate, well accepted measure of Gc
- Single specimen tested at a time
- Moderate moisture conditioning time

SUMMARY

Benefits to Aviation

- Improved environmental durability test method for metal bonds (metal wedge test, ASTM D3762)
- Composite wedge test for assessing the environmental durability of composite bonds
- Evaluation of candidate test methods for assessing the environmental durability of adhesively bonded aircraft structures
- Dissemination of research results through FAA technical reports and conference/journal publications

