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Durability of Bonded Aircraft Structure

Motivation and Key Issues:

— Adhesive bonding is a key path towards reduced weight in aerospace
structures.

—  Certification requirements for bonded structures are not well defined.

Obijective

Improve our understanding of adhesive response under fatigue loading.
—  Effect of peel stress on static and fatigue response.

— Response in tension and shear, in bulk and thin bonds.

—  Effect of joint toughness on fatigue life.

—  Visco-elastic response in static and cyclic loading.

Approach

—  Coupons with varying amounts of peel stress

— Bulk adhesives and thin bonds, plasticity models
—  Bond thickness and temperature

—  Non-linear viscoelasticty
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- EA9696 — High toughness
- FM300-2 = EA9380.05
- EA9394 - Low toughness (adhesive failure)
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Scarf Joint - Static

. EA9696 and EA9380.05 show more softening - EA9696
- FM300-2 strongest
- Static strength does not correlate well with G¢ - FM300-2
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Scarf Joint - Fatigue

EA9696 has highest fatigue life
EA9394 has shortest fatigue life
Fatigue life tends to correlate with G;
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Wide Area Lap Shear - Static
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Wide Area Lap Shear — Bond Thickness
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Wide Area Lap Shear: Bond Thickness
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Observations
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- Increase in thickness increases ductility of the joint.

- Bond thickness had negligible effect on fatigue life
- In fatigue, adhesive toughness is more important than peel stress.
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Wide Area Lap Shear: Temperature

- Static strength reduces as temperature increases 77F/25°C

- Toughness is not significantly affected by temperature
" 149F/65°C
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Stress Amplitude(psi)

Wide Area Lap Shear: Temperature

Fatigue life decreases as temperature increases 77F/25°C

Fatigue response strongly affected by static strength
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Observations from experiment

1.

G, tends to be a good indicator of fatigue performance

Joint toughness increases with peel stress and bond thickness, but
not with increasing temperature

Fatigue response depends more on adhesive toughness than bond
thickness or temperature.
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FEA adhesive models: EA9696

0 Model inputs

8000 = 8000 0.6
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" . : ; i b 3.5
- Not sensitive to hydrostatic stress ~ +  Linear elastic properties
- von Mises - Tensile hardening curve
> Input: - Drucker Prager parameters

- Linear elastic properties

. Tensile hardening curve - Can use shear input (not usually done)

Did not improve correlation with current results
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FEA adhesive models: EA9696

0 Bulk adhesive in tension (input) a Thick adherend lap shear
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- Good agreement - Good agreement only for linear elastic
. von Mises and Drucker Prager portion
predicted same result - Von Mises and Drucker Prager predicted

similar results
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FEA adhesive models: EA9696

> Bulk shear specimen > Scarf joint > WALS
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- Good agreement - Good agreement - Good agreement
- Drucker Prager exceeded von - No non-linear response - Von Mises and Drucker Prager
Mises by 4% predicted similar results
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FEA adhesive models: EA9696
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FEA adhesive models: EA9696

> Comparison of shear configurations: Peel stress analogy
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Observations
1. Joints with low peel stress had low toughness and were readily modeled using elastic response
2. Joints with high peel stress could not be modeled from constituent properties
- Required tailored hardening curve (extended) for each configuration
3. Drucker Prager model agreed slightly better than von Mises elastic plastic model
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Progressive damage modeling

Aim: Identify failure criterion for adhesive joints under cohesive damage
and validate with experimental results.

Material degradation and failure Adhesive

(no pre-crack needs to be defined) type Mechanism

Cohesive zone model: CZM
» Uses traction separation law
 Based on interface Finite Element

High LEFM &
ductility EPFM

Continuum damage Model :CDM

» Material degradation occurs inside of solid element

« when damage propagation onset & path are not known a
priori

Advantages of CDM over CZM

0 Predict mode-mixity even when one of modes predominates

0 Capture the influence of asymmetrical propagation and crack path along adhesive
thickness

0 Size and shape of fracture process zone (FZP) and its evolution during crack

growth is well managed
JWS o
‘ e 18
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Progressive damage modeling

Development of a numerical fracture model incorporating CZM,CDM -
ABAQUS
v Use DCB and ENF (Damage for pure mode | & I)

Constitutive softening law Ll
Cohesive/Damage parameter D=um (ddm — '
0<D<1 N1m) /odm (ddum —
Nl1m)
Critical Fracture Energy (mode |, Il)  &d/=0d6du/m /2 GII7 |
=7dlu,/Im /2 i i
Future Work

Fatigue damage of adhesives — experiments and models
Composite adherends
v CDM and CZM can be used to simulate the failure of adherends and adhesive
v Failure is combination of cohesive and delamination of substrate
v Simulation of delamination development in fiber composites and failure of adhesive joints
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Time Dependence

Aims:

o ldentify the influence of toughening agents
on adhesive time dependent response.

o Find nonlinear threshold.

o Determine if ratcheting behavior occurs
under repeated loading.

Ratcheting: cyclic accumulation of
inelastic deformation.

Approach:

©)

Creep tests at different durations and
stress levels.

Fit response to linear and nonlinear
viscoelastic models.

Compare load response with linear
model to find nonlinear and ratcheting
thresholds and determine how nonlinear
model predicts strain.

Cyclic Loading

Input

Stress

Time

Strain

JANS

Output

Time

A Center of Excelence
Advanced Materials in
Transport Aircraft Structures

20



Linear Viscoelasticity
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Linear Viscoelasticity

* Adhesives behave nonlinearly
— Initial compliance
— Compliance over time

Standard Adhesive Toughened Adhesive
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Linear Viscoelasticity: Temperature

Strength decreases almost linearly with increasing temperature
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Linear Viscoelasticity: Temperature

EA 9696 increased nonlinearity and creep with increasing temperature.
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Linear Viscoelasticity: Temperature

FM300-2 increased nonlinearity and creep with increasing temperature.
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Linear Viscoelasticity: Temperature

Strain input

£(t)=9fodmax /5 {DI0 t+DI1 tTn+1 /n+1

+1 /n+1 JH(i—1) }
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Nonlinear Viscoelasticity

Nonlinear viscoelastic strain to an arbitrary stress input

FI3)dEI dEL2 d&l3

For uniaxial creep, this becomes

E()=FI1 o+ FI2 oT2 +FI3 073

Fll : FJZ , and F»l3 are found from creep tests at three stress levels, O'JA :
O'JB and O'\lc,

DIOLA +DULLA ¢Tnid =FUL+F12 GlA+FI3 7ld 12
4048 +0iT% 1 SIS 12 18 E813 5iB 12,




Nonlinear Creep

Good agreement under creep
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Nonlinear Ratcheting

For a cycled stress input in ratcheting, nonlinear strain is given by,

g(t)=9fclmax /5(0lA —0clF )(0dlA glB —old glC—olF
aglC+allCT2 ) [LI1 (A)(olB aglCT2 —alFT2 glC )+ LI1 (B)
(0lC glAT2 —alCT2 glA )+1LI1 (O)(0dA alBT2 —alAT2
olB )[+81 /T2 olmax 12 /25(0lA —oclF )(0glA glB —olA
odC—alB alC+olCT2) [LI2 (A)(dlCT2 —alBT2 )+ L2
(B)(0dAT2 —alCT2 )+LI2 (O)(0lBT2 —alAT2 )[+729 T3
olmax 13 /125(0lA —olF )(0lA glB —clA glC—olB oglC
+adCT2 ) [LI3 (A)(0lC—0alF )+LI3 (B)(0dA—oll )+LI3

(O)(glB —alA)]

DI0 (t—t¢1)+0¢1 (t—=tdi) Tn+1 /n+1 ]/
L2 =DJ0 ¢12 e T+ oS+ /= 2tms

D NDIO £ 17 L DI A FTEN Tt 1 St 1 -|-/7/1 YD Ea




Nonlinear Ratcheting

Nonlinear viscoelastic model over predicts strain at high stress
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Permanent Strain

* Max strain: strain after 9000s of recovery
» Both adhesives showed lower permanent strain from ratcheting

Standard Adhesive Toughened Adhesive
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300 °o 1400 ¢
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Time Dependence

Observations

o Both adhesives show a nonlinear creep and ratcheting response.

o Creep experiments can be used to predict ratcheting response.

o Nonlinearity appears to begin after 50% which corresponds to permanent formation
o Permanent strain is small (3% of the total strain)

o A nonlinear model improves correlations, but becomes unstable after 400 cycles
Next Steps

o Test 10,000 second creep and 10,000 cycle ratcheting

o Develop strategies to improve nonlinear model

o Consider effect of low temperature creep
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Looking forward

 Benefit to Aviation

— Improved (accelerated) certification procedures for
bonded structure

— Guidance for adhesive joint design under fatigue
loading
* Future needs

— Improved understanding of adhesive non-linear
adhesive response
» Viscoelastic, plastic/damage, environment.

A Center of Excelence
Advanced Materials in
m Transport Aircraft Structures 3 3



cm A Genter of xcllence
Advanced Materials in
- - Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES
CENTER OF EXCELLENCE




