

Impact Damage Formation on Composite Aircraft Structures

2012 Technical Review Hyonny Kim University of California San Diego

FAA JAMS 2012 Technical Review Meeting, April 5, 2012, Baltimore, MD

Impact Damage Formation on Composite Aircraft Structures

- Principal Investigators & Researchers
 - PI: Prof. Hyonny Kim, Associate Professor, UCSD
 » Prof. J.M. Yang, UCLA sending subcontract to UCSD
 - Graduate Students:
 - » PhD: Gabriela DeFrancisci, Zhi Chen, Jennifer Rhymer
 - » MS: Sho Funai, Mac Delaney, Jacqui Le
 - Undergraduates: Sarah Fung, Jon Hughes, Sean Luong, Isabel Cole
- FAA Technical Monitor
 - Lynn Pham

Other FAA Personnel Involved

- Curt Davies
- Larry Ilcewicz

Industry Participation

- Material support by Cytec, San Diego Composites, Boeing
- Participation by Airbus, Bombardier, UAL, Delta, JC Halpin
- Collaborations with Sandia Labs, Bishop GMBH (EASA-funded)

Impact Damage Formation on Composite Aircraft Structures

Motivation and Key Issues

- impacts are ongoing and major source of (hidden) damage
- high energy blunt impact damage (**BID**) of key interest
 - involves large contact area, not well understood
 - can exist with *little or no exterior visibility*
- **Existing Needs:** (i) establish clear understanding of damage formation from <u>blunt</u> sources, (ii) prediction capability
- Focus: sources of concern are <u>blunt impacts</u> affecting <u>wide area</u> and/or <u>multiple structural elements</u>

Hail Ice Impact

- upward & forward facing surfaces
- low mass, high velocity
- threat: 38-61 mm diam. ice at in-flight speed

Ground Vehicles & Service Equipment

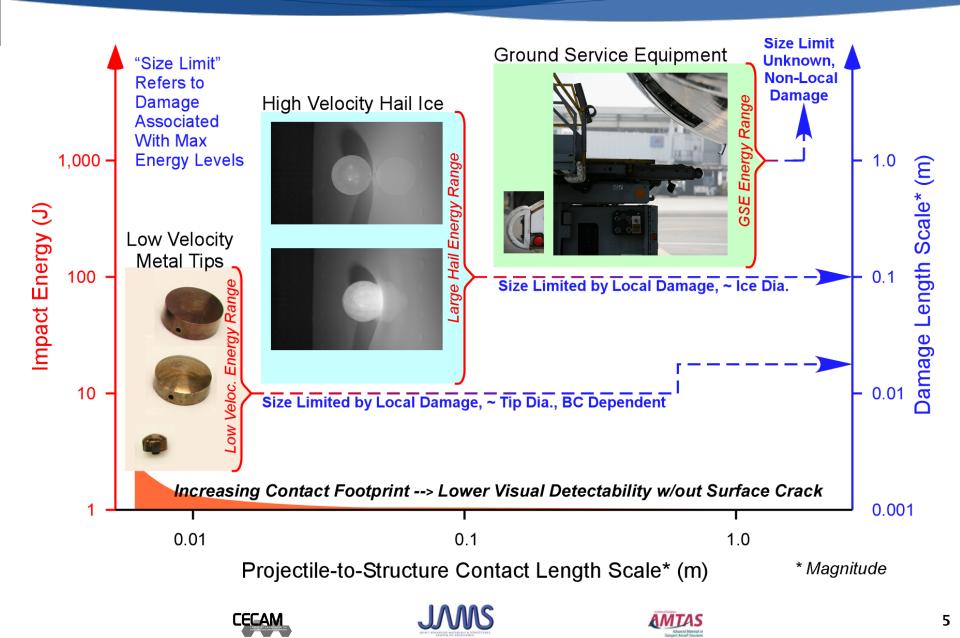
- side & lower facing surfaces
- high mass, low velocity
- wide area contact
- damage at locations away from impact likely
- threats:
 - belt loader ~3,000 kg
 - cargo loader ~15,000 kg

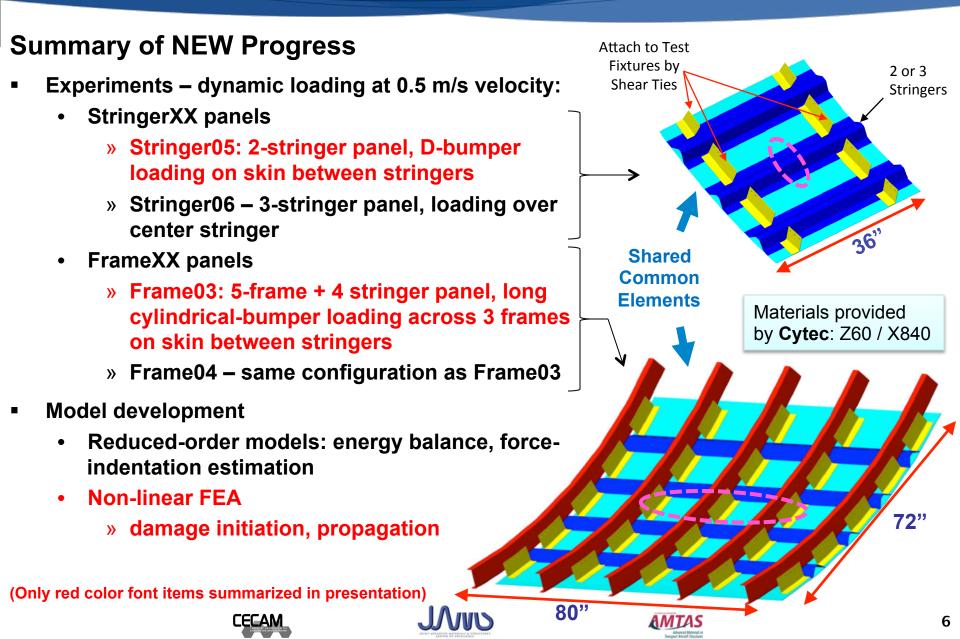
Impact Damage Formation on Composite Aircraft Structures

Objectives

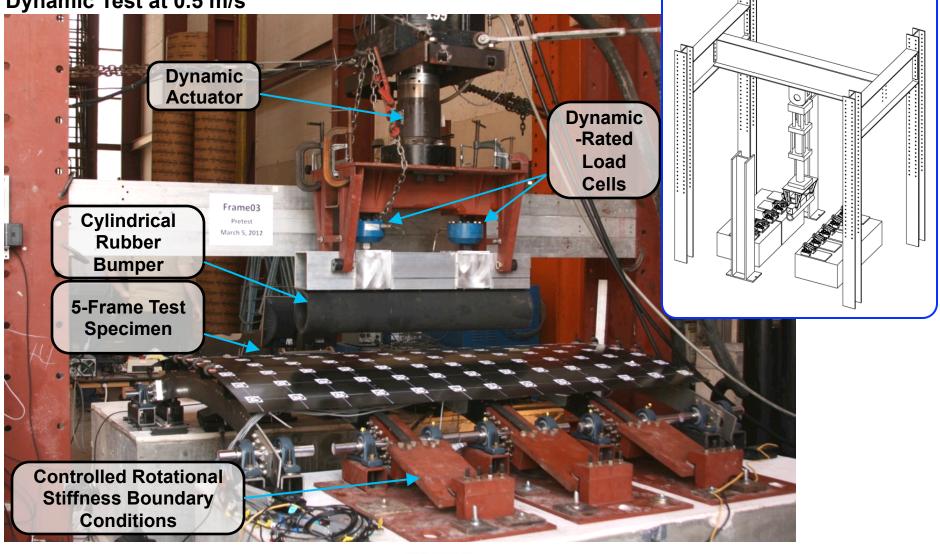
- Characterize Blunt Impact threats and the locations where damage can occur
- Understand BID formation and visual detectability
 - determine key phenomena and parameters
 - how affected by bluntness/contact-area
 - ID & predict failure thresholds (useful for design)
 - what conditions relate to <u>development of significant internal damage with minimal or</u> <u>no exterior visual detectability?</u>
- Develop analysis & testing methodologies, new modeling capabilities validated by tests

Approach


- Experiments: impact representative structure/specimens
 - » wide area high energy blunt impact e.g., from ground service equipment
 - » high velocity hail ice impacts in-flight and ground-hail conditions, internal stiffeners
 - » low velocity impacts non-deforming impactor, large radius effects
- Modeling nonlinear FEA, analytical
- Communication of results to industry, collaboration on relevant problems/projects via workshops and meetings (at UCSD, via teleconf)



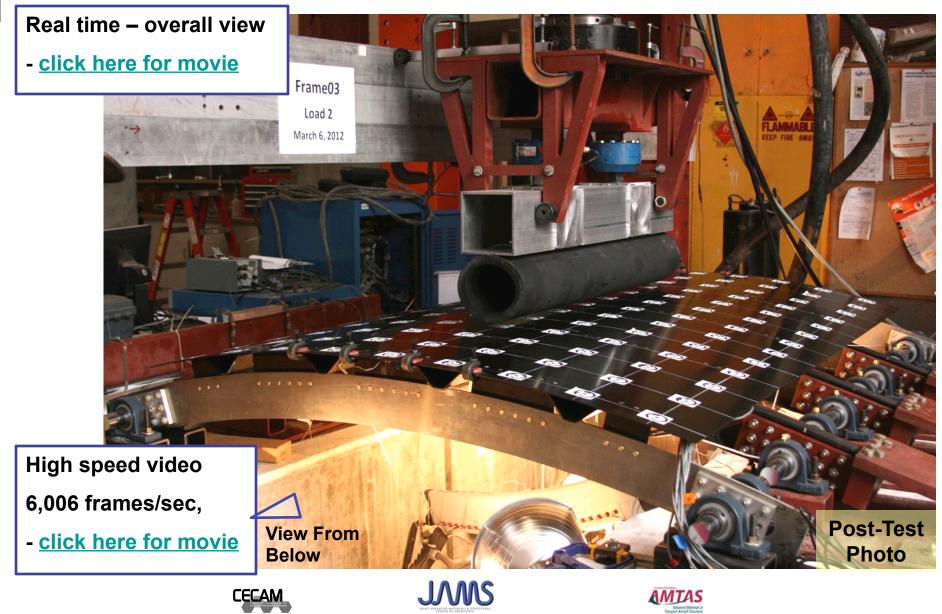
Blunt Impact Energy-Damage Spectrum

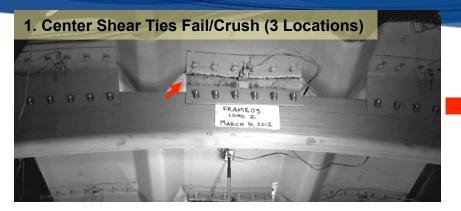


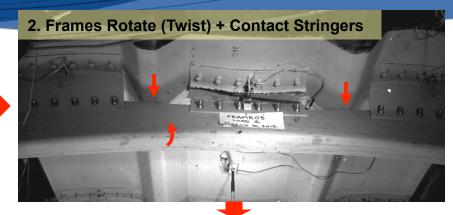
Ground Service Equipment Blunt Impact

Large Specimen Frame03 Test Setup

Dynamic Test at 0.5 m/s

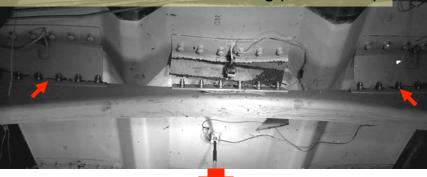






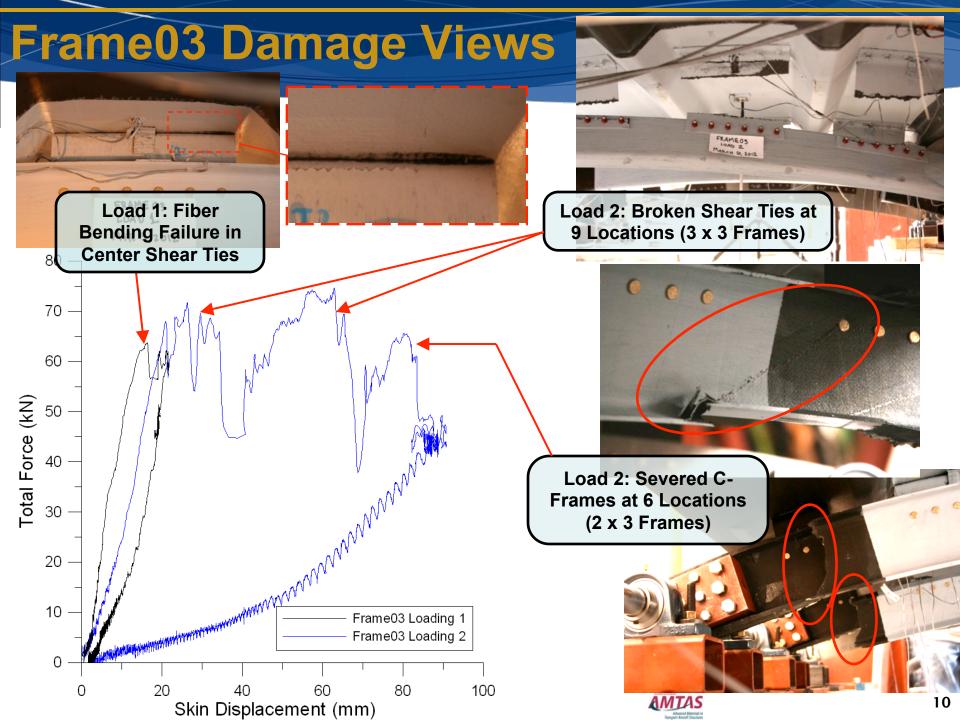
Frame03 Test Videos

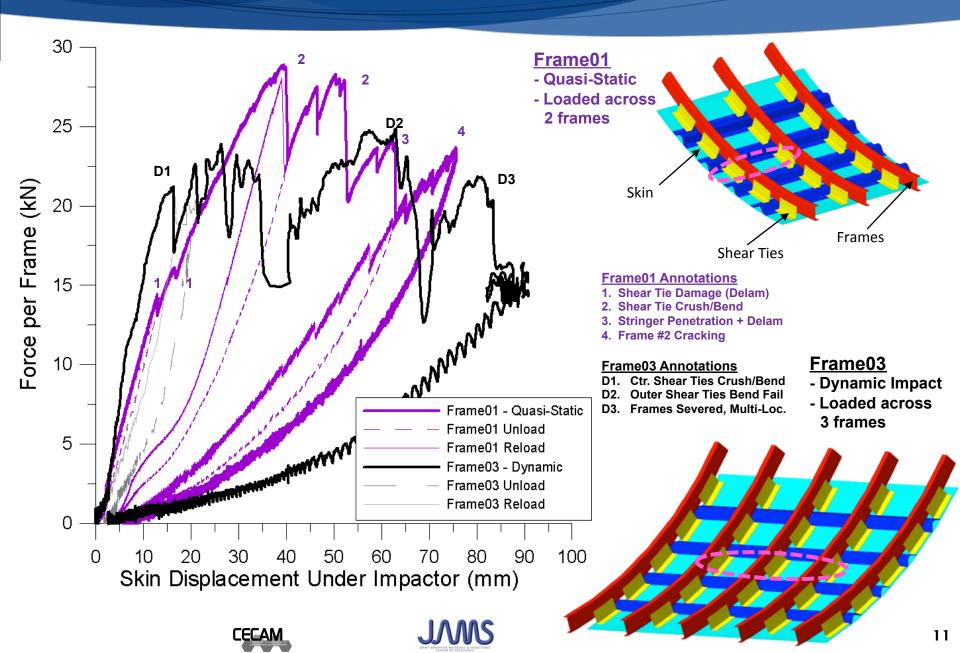
Sequence Leading to Frame Failure

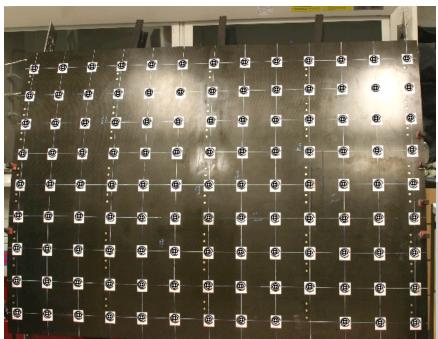


3. Outer Shear Ties Fail in Bending (6 Locations)

Ph.D. students Gabriela DeFrancisci and Zhi Chen holding liberated frame fragment which dropped during impact test.

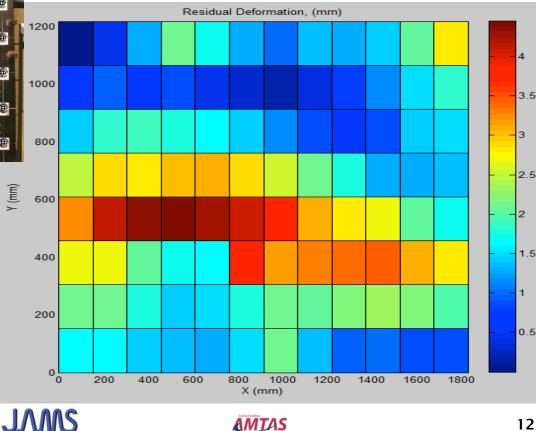

4. Frame Failure - 4 Pt Bending + Torsion (6 Locations)


AMTAS



Frame03 Dynamic Response vs. Quasi-Static

Frame03 Residual Deformation


Results

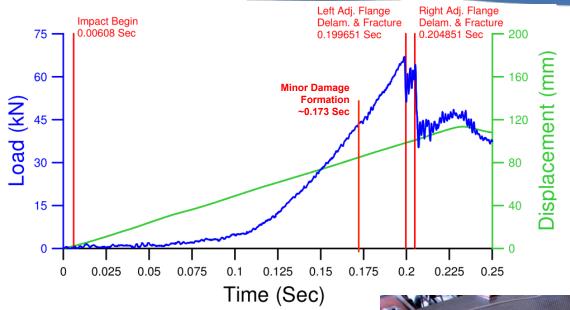
- 4.5 mm deformation
 - difficult to visually detect over large ~1 m span
- measurement made several days post-test → permanent deformation

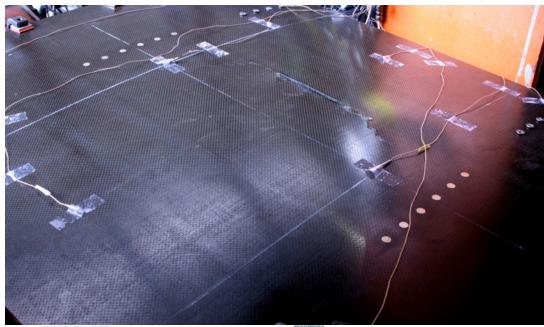
Photogrammetry with coded targets

- compare pre- and post-test photos
- creates 3-D surface map

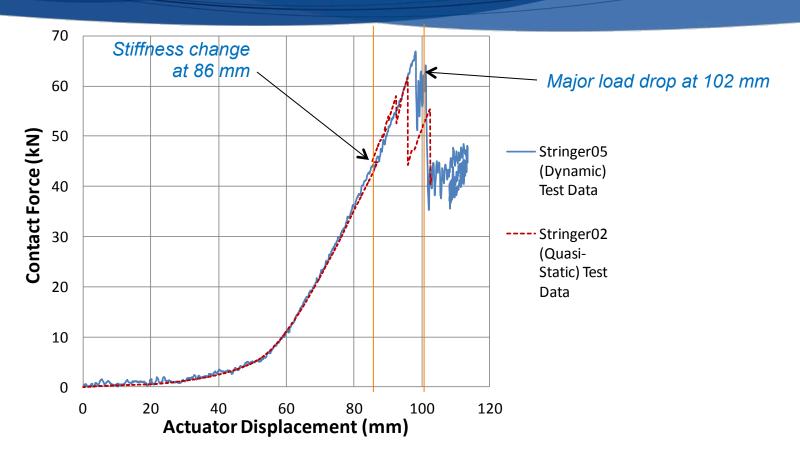
Residual Deformation (Change in Surface Profile)

FrameXX Specimens Results Summary


Specimen ID	Panel Config	Loading Details	Intermediate Failure Modes	Final Failure Mode	Vis- ible?	Max Load (kN)	Max Indent (mm)
Frame01	4 Stringers, 3 Frames	Long Cyl. Bumper Spans 2 Frames, Between Stringers, Q-Static	Shear Ties Crush, Stringer Sever & Flange Delam	Frame Crack	N	57.4 (28.7/ Frame)	75.5
Frame02	5 Stringers, 3 Frames	Long Cyl. Bumper Spans 2 Frames, at Stringer, Q- Static	Shear Ties Crush, Stringer Sever & Flange Delam, Skin Crack	Frame Crack	Y	71.0 (35.5/ Frame)	55.9
↓ Frame03	4 Stringers, 5 Frames	Long Cyl. Bumper Spans 3 Frames, Between Stringers, <i>Dynamic</i>	Shear Ties Crush (Qnty 3) & Bending Failure (Qnty 6)	3 Frames Severed, Each @ 2 Locations	N	74.1 (24.7/ Frame)	90.9
Frame04	4 Stringers, 5 Frames	Long Cyl. Bumper Spans 3 Frames, Between Stringers, <i>Dynamic</i>	Specimen assembly & instrumentation near complete.	Test planned for April 2012.			



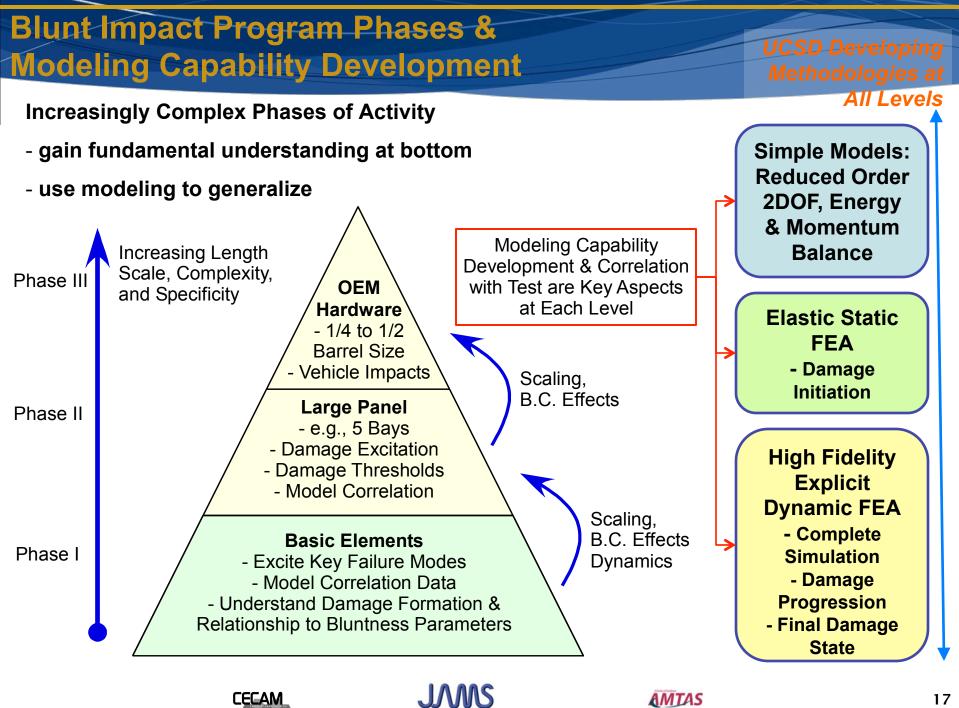
Small Panel - Stringer05 Test Summary



- Dynamic loading at 0.5 m/s
- Damage:
 - local penetration of skin
 - highly visible surface cracks
 - widespread stringer separation from skin

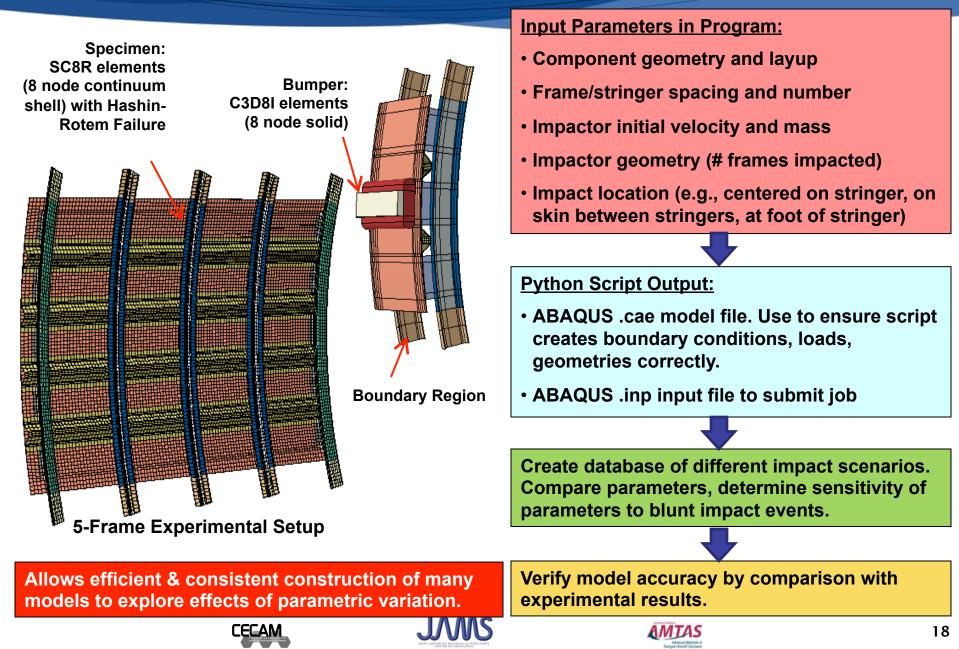
Stringer05 Dynamic vs. Quasi-Static Comparison

- Dynamic up-loading response matches almost exactly with quasi-static case
- Stringer05 peaked at 67 kN an 8.6% increase for dynamic (failure onset delay)
- Different failure modes
 - > Quasi-static: wide spread skin-stringer delamination starting at shear ties
 - > Dynamic: localized skin-stringer delam. + skin penetration, stringer radius bending failures

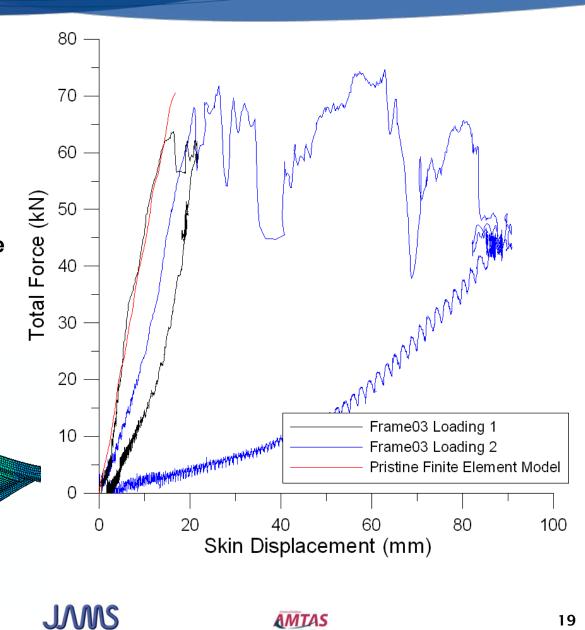


StringerXX Specimens Results Summary

Specimen ID	Panel Config	Loading Details	Intermediate Failure Modes	Final Failure Mode	Vis- ible?	Max Load (kN)	Max Indent (mm)
Stringer00	3 Stringers	R3" Alum. Over Stringer, Q-Static	Skin Delamination	Local Skin Penetration	Y	30.7	25.3
Stringer01	2 Stringers	R3" Alum. on Skin Between Stringers, Q-Static	Skin Delamination	Local Skin Penetration	Y	26.7	21.8
Stringer02	2 Stringers	D-Bumper on Skin Between Stringers, Q-Static	Skin-Stringer Delamination of Each Adjacent Stringer	Extensive Stringer-Skin Delamination	N	61.7	39.5
Stringer03	3 Stringers	D-Bumper Over Stringer, Q-Static	Stringer Radius Cracks Under Indentor	Extensive Stringer-Skin Delamination	Y	61.6	~48.5
Stringer04	3 Stringers	D-Bumper on Stringer Flange, Q-Static	Stringer Radius Cracks Under Indentor	Extensive Stringer-Skin Delamination	Y	78.2	~44.2
Stringer05	2 Stringers	D-Bumper on Skin Between Stringers, <i>Dynamic</i>	Stringer-Skin Delamination (Just Before Final Failure)	Stringer Flange & Rad. Failure & Fracture, Delamination	Y	67.0	n/a
↓ Stringer06	3 Stringers	D-Bumper Over Stringer, <i>Dynamic</i>	Stringer-Skin Delamination (Just Before Final Failure)	Stringer Radius Failure & Fracture, Delamination	Y	57.4	n/a
		CECAM					16

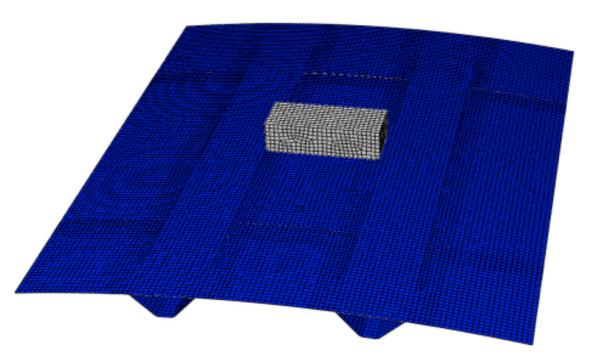


CECAM


AMTAS

Script-Based Model Build - Preliminary Design Tool

Frame03 Modeling – Initial Response


- Loading 1 caused crushing damage of center shear ties
- Initial path predicted well by "Pristine Model" (i.e., no failure, softening)
- WORK IN PROGRESS: **Delamination + fiber failure will** be incorporated to predict failure initiation + propagation

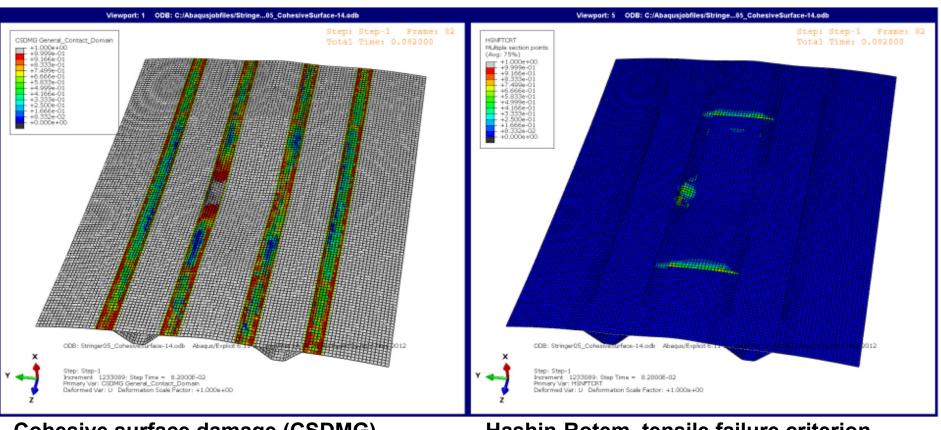
AMTAS

Stringer05 Finite Element Model

Model Details

- ABAQUS/Explicit dynamic simulation
- Shell elements (SR4)
- Flattened rubber bumper (solid)
 - used in place of D-shaped bumper to reduce computational costs
- Hashin-Rotem failure criteria
 - in-plane fiber and matrix failure
- <u>Cohesive Surfaces</u> to model delamination
 - implemented between skin and stringer flanges
- Tied constraints represent mechanical fastener connections

Notes:

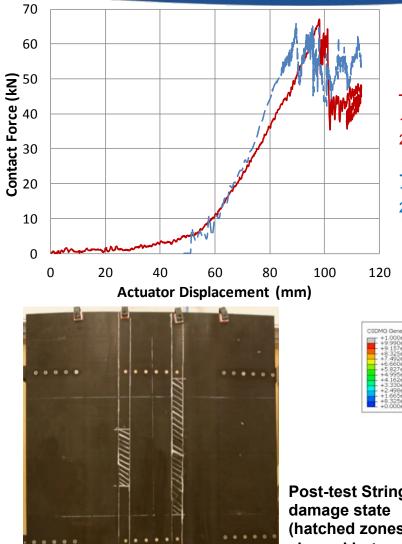

- 1. Composite and cohesive properties obtained for similar materials values found in open literature.
- 2. No "tuning" of any properties or failure parameters done to achieve better correlation.

Stringer05 Finite Element Model Failure Predictions

Cohesive surface damage (CSDMG) - stringer separation from skin

Both damage types initiate at the same time.

Click here for movie.


- skin and stringer flange cracks due to fiber tension (visible damage)

Stringer05 Finite Element Model Comparison

--- FEA 1st Delam. at 65.8 kN 2nd Delam. at 65.4 kN

Test and Model Comparison

- Stringer-skin delamination confined between shear ties and grows from loading location outwards
 - significant load drops
- FEA Model successfully matches :
 - initial loading response
 - failure initiation loads
 - failure modes
 - final damage state

Post-test Stringer05 damage state (hatched zones show skin-tostringer delamination)

FEA model predicted damage state after full actuator displacement (red zone shows where stringer flanges are intact)

GSE Blunt Impact Conclusions

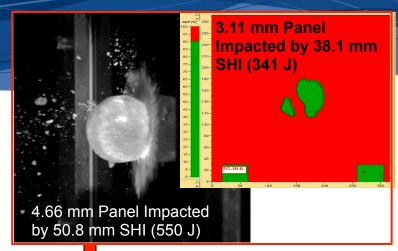
Experiments

- Impacts onto FrameXX configuration can be treated on per-frame basis
- Significant damage requires high forces e.g., ~70 kN (15,700 lbf) on 3 frame impact
 - » major event loud noise, entire aircraft will move
 - » modest contact (bumper just touches) likely causes no damage, or shear tie damage only
 - » force thresholds can be identified
- Dynamic effects (vs. quasi-static):
 - » localization of response can lead to penetration of skin at impact point
 - <u>failure mode change</u> particularly when non-local response occurred for quasi-static
 - » non-local response possible if load path to internal frames is close to impact point
 - failure anywhere along load path, especially at joints/transitions
 - secondary impacts from aircraft bumping other surrounding GSE
- Contact of frames and stringers plays major role
 - » promotes rotation of frame
 - » penetration of frame or stringer, or failure in frame at locations further away
- No exterior visibility (cracks) for long bumper on skin between stringers across frames

Model Development

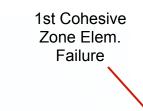
- Methodology being established "how to" analyze
- Capability to predict damage initiation and final failure state
 - » demonstrated in smaller StringerXX specimens will extend to larger FrameXX

High Velocity Ice Impact


Experiments Summary

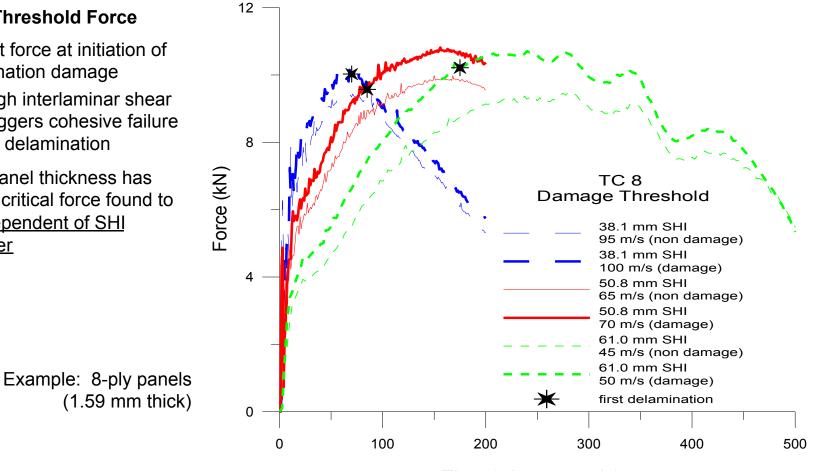
- Established failure threshold energy (FTE) and failure threshold velocity (FTV) of Toray T800/3900-2 unidirectional tape
 - 1.59 to 4.66 mm thick quasiisotropic panels
 - high velocity ice sphere impact » 38.1, 50.8, and 61 mm dia.

FEA Model Details


- Ice material model developed by UCSD (MS Thesis – Jeff Tippmann 2011)
 - strain rate sensitive strength
- Composite Panel
 - solid element ply-by-ply modeling
 - cohesive zone elements between plies
 - all properties from literature no "tuning" to match test data

CECAM

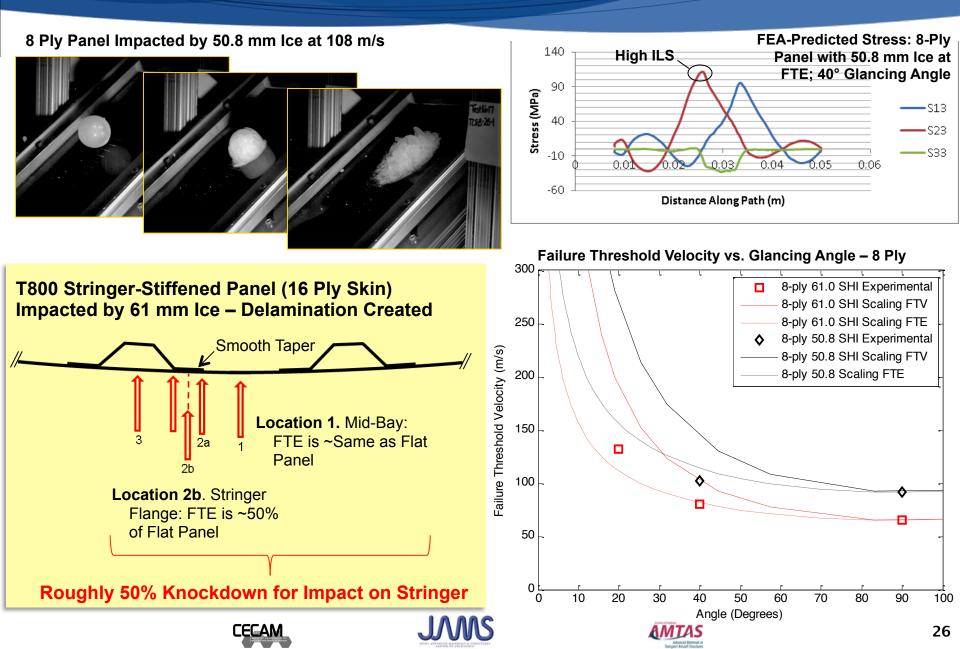
SHI	Experimental	Experimental	FEA-Predicted
Diameter	FTE (J)	FTV (m/s)	FTV (m/s)
38.1 mm	172	115	98
50.8 mm	258	91	68
61.0 mm	223	65	48
38.1 mm	311	154	148
50.8 mm	456	121	108
61.0 mm	489	96	83
38.1 mm	413	178	178
50.8 mm	733	154	153
61.0 mm	865	127	118
	Diameter 38.1 mm 50.8 mm 61.0 mm 38.1 mm 61.0 mm 38.1 mm 38.1 mm 50.8 mm	DiameterFTE (J)38.1 mm17250.8 mm25861.0 mm22338.1 mm31150.8 mm45661.0 mm48938.1 mm41350.8 mm733	DiameterFTE (J)FTV (m/s)38.1 mm17211550.8 mm2589161.0 mm2236538.1 mm31115450.8 mm45612161.0 mm4899638.1 mm41317850.8 mm733154


AMTAS

Ice Impact Critical Threshold Force

Critical Threshold Force

- Contact force at initiation of delamination damage
 - high interlaminar shear triggers cohesive failure \rightarrow delamination
- Each panel thickness has unique critical force found to be independent of SHI diameter


Time (microseconds)

Glancing and Stiffened Panel Ice Impact

Low Velocity Blunt Drop-Weight Impacts

Objectives

- Determine damage thresholds for composite laminates
 - how affected by radius of impact tip?
 - damage modes for different energy levels and tip radii
- Monitor dent formation and relaxation vs. radius

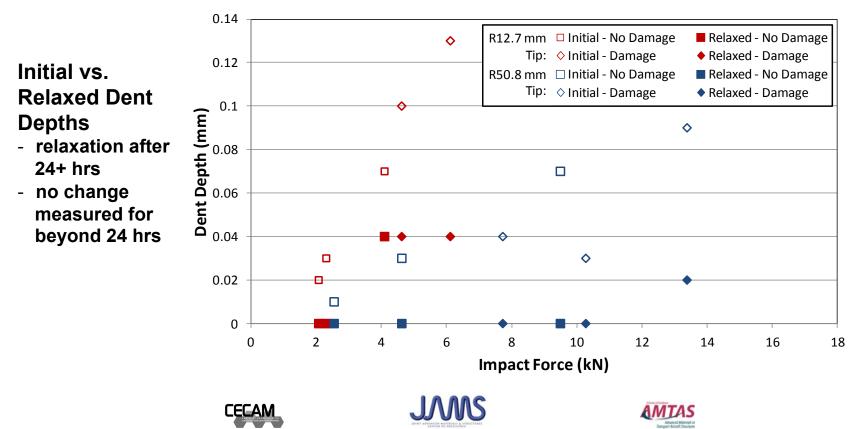
Test Setup

- Specimens are T800/3900-2 Carbon/Epoxy, quasi isotropic laminates of 8, 16, and 24 plies
 - aerospace paint layer on impact surface
- Drop-weight pendulum impactor up to 100 J
- Impact tips radii: 12.7, 25.4, and 50.8 mm

Failure Thresholds – Metal Tips

	FTE (J) for Impactor Radius		
Panel Type	12.7 mm	50. 8 mm	
8 Plies	10	20	
16 Plies	16	40	
24 Plies	20	43	

Damage to 16-ply panel by 12.7 mm radius tip.



Blunt Drop-Weight Impact Results

- Damage modes: delamination and surface dents + backside fiber breakage for higher energy
- External visibility strongly depends on impactor radius
 - 12.7 mm radius tip: usually leaves visible dent even without internal damage
 - blunt tips: possible to create no visible dent even with internal damage
- Surface dent relaxation
 - less visible than immediately after impact
 - blunt tips: initially measurable dent can relax to immeasurable level

Benefit to Aviation – Part 1 of 2

Wide Area Blunt Impact

- Understanding of damage produced from wide-area GSE impact events
 - awareness of phenomena and possible internal failure modes
 - provides key information on mode and extent of seeded damage, particularly nonvisible impact damage (NVID) from blunt impact threats
 - threat conditions causing significant damage range of energy level needed
- Establish experimental methods full vs. substructure, dynamic effects
- Establish analytical capability to predict blunt impact damage
 - simple models energy balance
 - failure threshold force to estimate damage onset
 - relate to ground operations vehicle mass and speed
 - nonlinear FEA high fidelity damage simulation
 - initiation to final state
 - script-based FEA model build for preliminary design/analysis tool
 - evaluate various configurations and wide-ranging parametric dependencies
- Identify how to detect/monitor occurrence of damaging events
 - what inspection technique should be used? where?
 - e.g., video cameras and sensors that can help to determine impact energy

Benefit to Aviation – Part 2 of 2

Large Hail Ice Impact

- Damage resistance database established allows for skin sizing
 - understanding ice impact threat conditions causing damage ice size, velocity
 - effects of internal structural components (e.g., stringers)
- Models predicting damage onset (i.e., FTE)
 - reduce amount of testing required explore many configurations
 - accurate ice projectile model defined critical for accurate target response
- Glancing impact studies provide scaling relationship to use normal impact data
- Stringer hit adjacency provides information on % knockdown relative to skin-only impact

Low Velocity Blunt Drop-Weight Impacts

- Understanding of damage produced from blunt metal tip impacts
 - correlation between damage onset and impactor radius
 - establish relationship between visible and internal damage
 - dent relaxation dependency on impactor radius
- Material-level test results are widely applicable
 - threshold force measurements facilitate applicability to other structural components

Looking Forward – Ongoing/Future Plans

- Complete *dynamic* blunt impact test on Phase II large 5-frame specimen (Frame04)
 - dynamic impact vs quasi-static indentation rate, scaling, and BC effects
- Continued developments to establish high fidelity FEA modeling capability
 - damage initiation, progressive failure process, damage extent, energy absorption
 - » correlation to large panel test results use direct material properties (no "tuning")
 - $\ensuremath{\,{\scriptscriptstyle \times}}$ define visibility metrics compatible with FEA
 - cohesive surfaces implementation into shell-based models to represent delamination
- Develop and refine reduced order models
 - estimate damage onset for wide parameter range: GSE mass, velocity, impact location
 - relate test results to GSE field operations
- New investigations needed (experimental + analytical):
 - glancing impacts effects
 - » define scaling relationships via momentum and angle
 - » moving contact area e.g., pushing across multiple stringers
 - BC and dynamic localization effects on larger sized specimen $\frac{1}{4}$ or $\frac{1}{2}$ barrel w/ floors
 - metal fuselage for metal baseline compare particularly visibility aspects
 - other primary structure types e.g., wing, tail
- Hail ice damage resistance and morphology for sandwich construction, multi-hit, stiffened skin (stiffened skin impact has started)
- Education/Training: dissemination of results, workshops

End of Presentation.

Thank you.

Acenter of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE