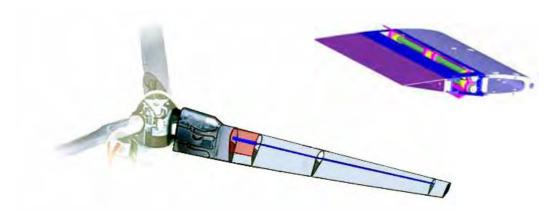


Boeing's Morphing Aerostructures


F. Tad Calkins Boeing Commercial Airplanes Enabling Technology and Research Aeroacoustics 425 237-2831 frederick.t.calkins@boeing.com

Outline

Morphing structures Actuation capability Potential applications The Future

Morphing Overview

BCA Noise Engineering

- Morphing Technologies increase a system's performance by manipulating characteristics to better match the system state to the operating conditions (environment and task)
- Aerospace applications
 - Landing gear
 - Flaps
 - Swing wing F-14, B1B
 Concorde nose tilt

 - V22 Rotors rotate down
 - Active Aeroelastic Wing
 - Mission Adaptive Wing

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/gallery/photo/index.html NASA Photo: EC86-33385-002 Date: February 27, 1986

AFTI F-111 Mission Adaptive Wing (MAW) in flight

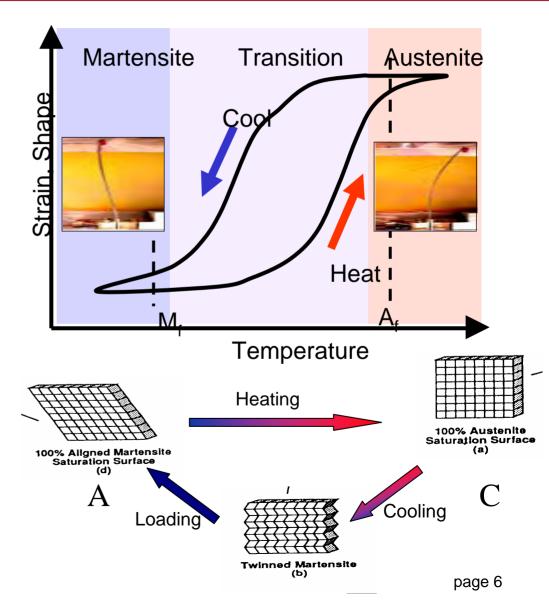
- Current "morphing" has disadvantages
 - Even small structural changes are difficult
 - Requires heavy motors, hydraulics, structural reinforcement
 - Complexity
 - Expensive
- "Smart" materials lead to new morphing concepts
 - Fully integrated, distributed actuation
 - Conventional components given additional capability
 - Does NOT add weight
 - Simple mechanisms
 - Add additional capability to current structure: "multifunctional element"
 - Smart materials applicable to morphing structures
 - Piezoelectrics, electrostrictives, piezopolymers (electro elastic)
 - Magnetostrictives, ferromagnetic SMA (magneto elastic)
 - Shape memory alloys, polymers (thermal elastic)
- Applicability to real airplanes in the near term

Integration of Shape Memory Alloys into aerospace materials, such as composites

Advantages To Boeing

BCA Noise Engineering

- Lighter Weight Aircraft
- Aircraft that Adapt to Changing Flight Conditions
- Low Part Count
- Long Shelf Live
- Increased Range

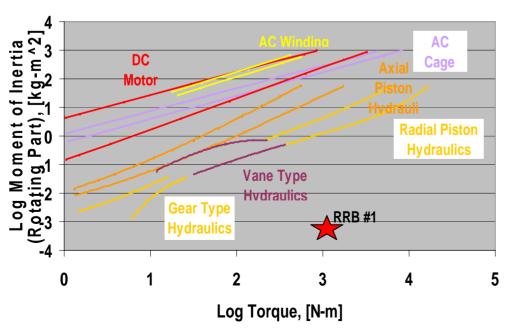

Simultaneous

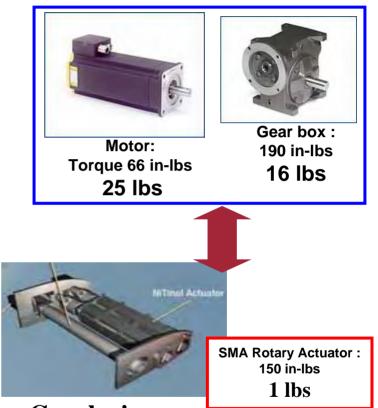
- Increased Payload
- Reduced Noise
- Reduced Operating Cost
- Reduced Time to Repair or Reconfigure

Shape Memory Alloy Actuators

- Nickel Titanium based (60-• Nitinol, 55-Nitinol, High temp)
- High efficiency, low weight, high energy density
- Shape Memory Effect Thermally activated

 - Microstrúctural phase change produces shape change under load
 - Shape change
 - Austenite (C) fully immersed
 - Martensite (A) retracted
- -Thermal management key to actuator operation
- -Other properties of interest
 - -Damping -Superelasticity -Hardness
- -Forms
 - -Wire
 - -Flexure
 - -Tube
 - -Other

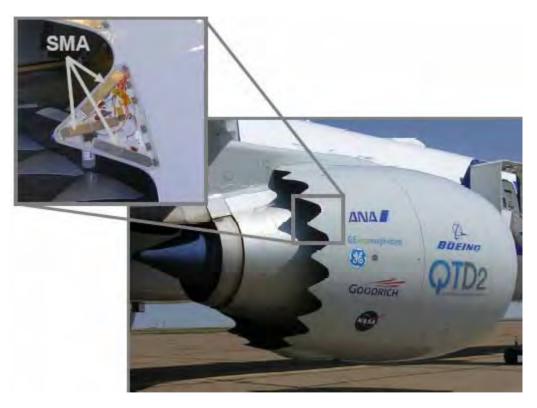



Benefits of SMA Based Design

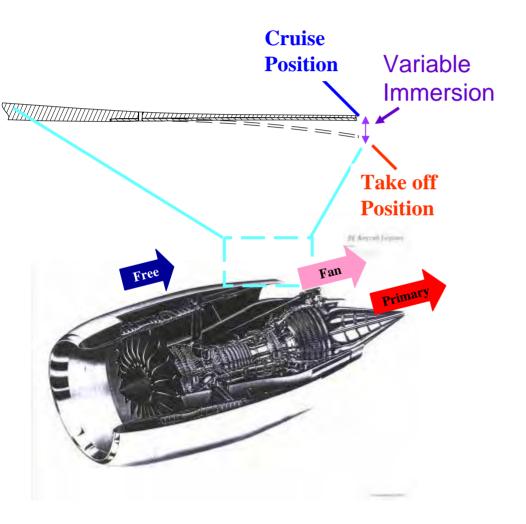
BCA Noise Engineering

- SMA Actuator Technology benefits
 - Robust Technology
 - Lightweight
 - Integrates well
 - Simple system design
 - Flight tested system
- Boeing is world leaders in this technology

Rotary Actuator Characteristics


Conclusion:

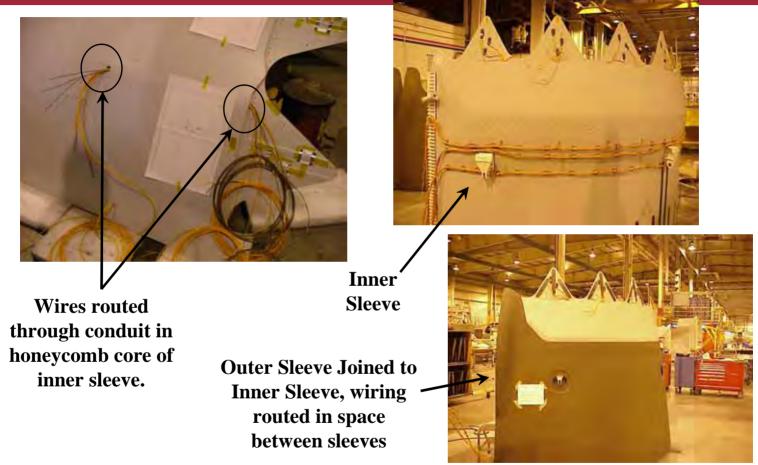
- NiTinol is ideal for torque high stroke, low duty cycle applications where weight is a premium
- Technology can provide major benefits for aerospace applications page 7


- Variable Geometry Chevron
- Reconfigurable Rotor Blade
- Deployable Rotor Tab
- Variable Engine Inlet

Variable Geometry Chevrons

- Reconfigurable engine
 nozzle fan chevron
- Apply morphing structures technology to enable efficient chevron shape change
- Shape Memory Alloy is key technology
- Example of new testing capability
- Mature technology TRL level 6-7

Variable Geometry Chevron Overview



- Goal: morph chevron shape to optimize engine performance Community noise reduction Shockcell noise reduction •

 - Cruise performance

Improved System Integration

BCA Noise Engineering

VGC was integrated into production design and fabrication processes. Future applications also need look ahead to system level integration issues and wherever possible also use a multi-function approach.

Mabe, 2006

VGC Flight Test/Static Engine Test Overview

BCA Noise Engineering

Flight Tests

- Instrumentation, power, gages, and controller worked without failure
- Demonstrated autonomous (non-powered) operation
- Demonstrate and tested individual VGC control of 9 Chevron configurations.

Flight Test used for development of 787 static fan chevrons

Static Engine Test

- Noise performance evaluated
- Demonstrated full autonomous operation

SMA Actuators Re-engineered for ground based operation.

- Higher Transition Temperature
- Increased Authority

Calkins, 2006, 2007

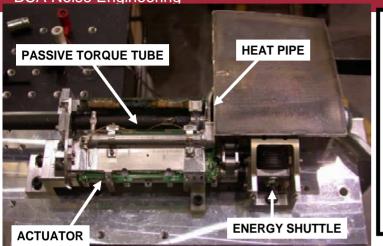
Reconfigurable Rotor Blade (RRB)

Shape-memory alloy actuation system

Heal rejection system (blade opper surface)

Passive torque lube

Shape-memory alley actuator (located within blade structure)


V-22 proprotor

Torque Tube Actuator

Energy shottle 2-pisition lock mechanism NiTimol Actuator

Reconfigurable Rotor Blade (RRB)

BCA Noise Engineering

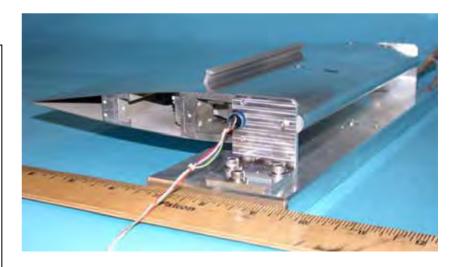
•Blade Twist Change Enhances Aircraft Performance

- Entire System weighs < 20 lbs
- 5000 in-lbs twists blade 2 deg

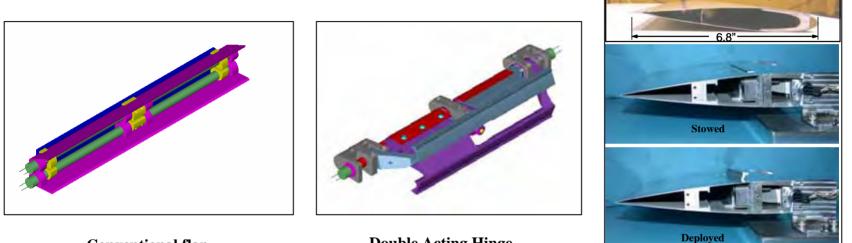

•1/4 Scale Wind Tunnel Tests Completed

- Integrated 3 actuators into CDI-V8 Blades
- Tested blades in several hovering and axial flight configurations
- Demonstrated ability of RRB actuation system to morph blade
- Twist in a rotating environment

Deployable Tabs for Blade Vortex Interaction Noises Reduction


BCA Noise Engineering

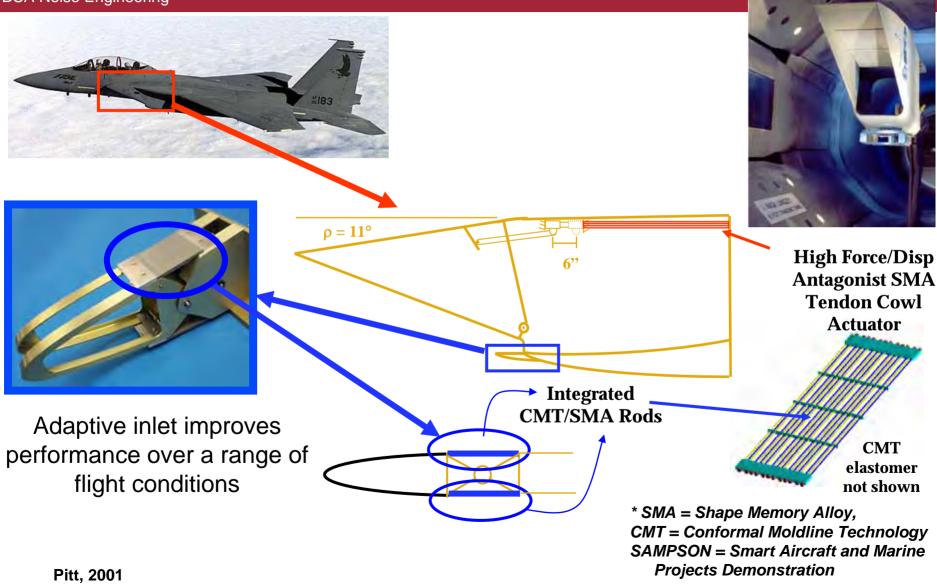
- Blade Vortex Interaction (BVI) noise caused by trailing rotor blades impacting vortices created by leading blade during descent.
- Deployable tabs or flaps break up vortices and significantly reduce noise.
- Conventional actuators too large and heavy.


Active Hinge Pin Actuator (AHPA)

- Order of magnitude reduction in weight than conventional actuation devices
- Compact size to fit rotor blade profile
- Ruggedized for harsh rotor blade environment
- Fails closed on loss of power

Integration is Key to Application Success

BCA Noise Engineering


Conventional flap

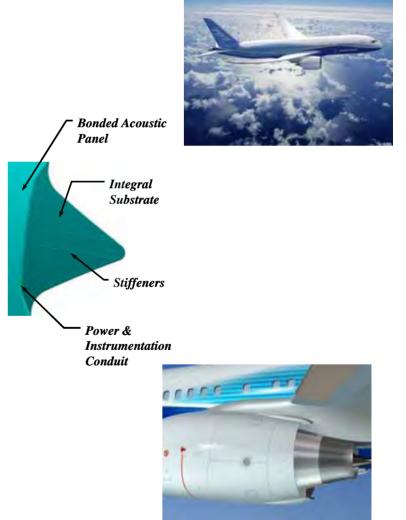
Double Acting Hinge

 Centrifuge and wind tunnel testing of deployable rotor blade devices using SMA actuators. Blade Thickness and Flap Displacement (in) 0.4 0.2 t=0 sec t=30 sec t=50 sec t=70 sec t=155 sec -0.2 n 2 3 4 5 6 6.8 200 Chord Position (in) 300 2. 111 m/s/m 400 **PIV data** 500 Centrifuge laser data

MD530F Selected As Target Blade

Engine Inlet Duct Shaping

SMA Morphing Structures Design Map

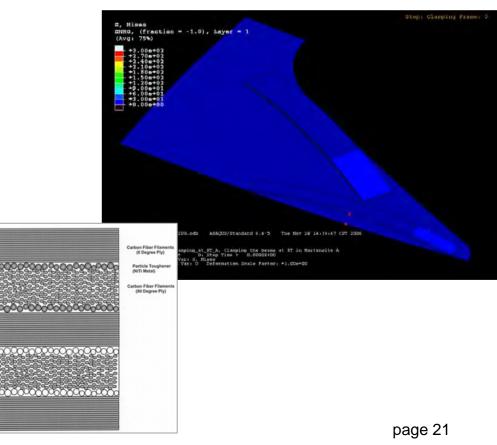

- SMA high energy density, low weight
- Simple design, low part count
- Fully integrate actuation into existing structure
- Add morphing to structural element: use morphing capability to optimize at multiple conditions
- Fast deployment, slower cycling
- Autonomous operation, thermal actuation, requires little or no power

Composite Design Approaches

BCA Noise Engineering

Traditional composite

- Stiff, lightweight
- Structural
- Multifunctional composite
 - Includes other capability (sensing, imbedded electronics)
- Morphing composite
 - Tailored composite enables motion/shape change



page 20

Morphing Structure Needs

- Tools
 - Modeling of structure and actuator
 - Improved design and analysis tool (FEA based)
 - Optimization methods
 - State of the art testing methods
- Integration
 - Fully integrated: multifunctional elements
 - Active structural element design
 - Sensing
 - Fabrication methods
- Composites
 - High performance composites designed for morphing
 - Reliability

SMA Based Morphing Structure Future Direction

- Use technology to explore optimization of at multiple flight/operating conditions
- Incorporate more smart material capabilities into structure
- Realization of true morphing structures that provide distributed continuous optimization of aircraft performance
- Changes design philosophy: design for optimum performance at each condition of interest
- Autonomous operation
- Explore morphing technology use for future "active" design work
- SMA Technology direction
 - New Alloys (high temperature)
 - Connections
 - Fabrication technology

- Technologists goal is to exploit the right technology for an application to meet a Boeing need.
- Rapid cutting edge technology development
- Full scale flight test validates SMA technology, system approach, and technical readiness for morphing structures.
- Current applications provide roadmap for future development.
- Factors converging to make this the right time to exploit next generation morphing structures
 - SMA technology is ready
 - Resources are in place
 - Need is there

• Composites are needed to facilitate morphing aerostructures

•Questions, Comments ?

- 1. F. Calkins, G. Butler, and J. Mabe, "Variable Geometry Chevrons for Jet Noise Reduction", AIAA-2006-2546, 12th AIAA/CEAS Aeroacoustics Conference, Cambridge MA, May 2006.
- 2. J.H. Mabe, F.T. Calkins, G.W. Butler, "Boeing's Variable Geometry Chevron: Morphing aerostructure for jet noise reduction," 47nd AIAA Adaptive Structures Conference, AIAA-2006-2142, Newport RI, May 2006.
- 3. Robert T. Ruggeri, Richard C. Bussom, Darin J. Arbogast, "Development of a ¼-scale NiTinol actuator for reconfigurable structures" SPIE Smart Materials and Structures, 2008, paper 6930-21.
- 4. D. M. Pitt, J. P. Dunne, E. V. White, "SAMPSON smart inlet SMA powered adaptive lip design and static test", AIAA-2001-1359,AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 42nd, Seattle, WA, Apr. 16-19, 2001.
- 5. Mabe, Gravatt Bushnell, Gutmark, Dimicco, Harris, "Shape Memory Alloy actuator for deployable rotor blade aerodynamic device," AIAA 2008-1451. page 25