DAMAGE TOLERANCE TEST METHOD DEVELOPMENT FOR SANDWICH COMPOSITES

Dan Adams Brad Kuramoto Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2013 Meeting Seattle, WA November 14, 2013

UNIVERSI

OF UTAH

A Center of Excellence Advanced Materials in Transport Aircraft Structures

Outline

- *Review*: Damage Tolerance Test Method Development for Sandwich Composites
- *Introduction*: Notch Sensitivity of Sandwich Composites
- *Summary*: Development and Evaluation of Fracture Mechanics Test Methods for Sandwich Composites

RESEARCH OBJECTIVES: Damage Tolerance Test Methods for Sandwich Composites

- Identify and evaluate candidate test methodologies
- Compare residual strengths of impact damaged sandwich panels using proposed test methods
- Develop standardized ASTM test method(s)
- Investigate scaling of test results

Edgewise Compression A Center of Excellence Advanced Materials in Transport Aircraft Structures

Four-Point Flexure

3

Hydromat Pressure Loading

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Considerations for Test Method Development: Damage Tolerance of Sandwich Composites

- Identify intended usage(s)
 - Quality Assurance
 - Material ranking/selection/specification
 - **b** Establishing design properties/allowables
 - Research and development activities
 - Product development
- Ensure compatibility with existing ASTM Standard for Damage Resistance Testing of Sandwich Composites (ASTM D7766, 2011)
- Establish suitable range of sandwich configurations
 - Facesheet and core parameters
 - Specimen size relative to damage size
 - Desired degree of strength reduction

Edgewise Compression Testing For Damage Tolerance: Considerations For Test Method Development

- Test fixture/Specimen support
 - "Clamped" at top & bottom
 - Potting of sandwich specimen ends
 - Internal potting: removal of core
 - External potting ???
 - Side supports
 - Knife edge (pinned)
 - Clamped (reduce rotation)
- Specimen size
 - Separation of damage and boundary effects
 - Production of acceptable strength reductions

Edgewise Compression Testing For Damage Tolerance: Initial Evaluations Using Idealized Impact Damage

- Glass/epoxy & carbon/epoxy facesheets, Nomex honeycomb core
- "Idealized" damage: 1 in. & 3 in. thru-hole in one facesheet
- Strength reductions relative to baseline (no damage) condition

Edgewise Compression Testing For Damage Tolerance: Investigating Required Specimen Dimensions

- Comparison with laminate Compression After Impact (CAI) test method (ASTM D 7137)
 - Damage size limited to half unsupported specimen width (1.7 in.)
- Analysis of laminate and sandwich specimens modeled with idealized damage
 - Thru and partial thickness holes
 - 4 x 6 in. cross-ply and quasi-isotropic laminates
 - 8.5 x 10.5 in. sandwich specimens
 - Carbon-epoxy laminate/facesheets
 - Nomex honeycomb core

Laminate

Sandwich

Investigating Required Specimen Dimensions: Comparison of Laminate and Sandwich Stress Distributions

Similar compressive stress distributions across specimen widths A Center of Excellence Advanced Materials in Transport Aircraft Structures 8

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Edgewise Compression Testing For Damage Tolerance: Current Focus

- Testing with actual impact damage
 - Impact procedure defined in ASTM D7766
 - Strain distributions via Digital Impact Correlation
 - Numerical modeling: prediction of residual strength
- Addressing suggestions provided by ASTM Committee D30 (October 23, Wichita, KS)
 - Harmonize with existing ASTM standard for Damage Resistance of Sandwich Composites, ASTM D7766 (2011)
 - Determine/specify default sandwich specimen dimensions
 - Provide guidance for selection of alternate specimen dimensions

- Thickness of sandwich configuration
- Damage area

Four-Point Flexure Testing For Damage Tolerance: Considerations For Test Method Development

- Required specimen dimensions for central test section
 - Separation of damage and loading point/boundary effects
- Required length of outer regions of sandwich specimen
 - Sufficient length to develop bending moment
 - Core requirements for shear stress
- Facesheet /core requirements at loading points

Four-Point Flexure Testing For Damage Tolerance: Initial Evaluations

- <u>First Round:</u> Undesirable failures in non-damaged sandwich specimens without modification
- Shear failure of honeycomb core in outer regions
- Localized failure at loading point
- Excessive deflection
- <u>Second Round:</u> Utilized spliced cores for higher shear strength and reduced stress concentrations at loading points
 - "Idealized" damage: 1 in. & 3 in. thru-hole in one facesheet

Four-Point Flexure Testing For Damage Tolerance: Current Focus

- Testing with actual impact damage
 - Impact procedure defined in ASTM D7766
 - Strain distributions via Digital Impact Correlation
 - Numerical modeling: prediction of residual strength
- Addressing suggestions provided by ASTM Committee D30 (October 23, Wichita, KS)
 - Harmonize with existing ASTM standard for Damage Resistance of Sandwich Composites, ASTM D7766 (2011)

Determine/specify default sandwich specimen core thickness

- Reduce/eliminate problems with core shear failure, localized failure at loading points, excessive deflection
- Utilize facesheet material/layup/thickness of interest

"Hydromat" Pressure Testing For Damage Tolerance: Based on Existing Standard: ASTM D 6146

- Simulates hydrostatic pressure loading
- Pressure loading of sandwich panel using test machine & pressure bladder
- Used primarily in marine industry
- Undesirable results using specimens with "idealized damage"
 - •Core shear failures in glass/epoxy specimens
 - •No failure at deflection limits for undamaged and 1 in. hole carbon/epoxy specimens
- Not pursuing further for sandwich damage tolerance testing

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Outline

- Review: Damage Tolerance Test Method Development for Sandwich Composites
- Introduction: Notch Sensitivity of Sandwich Composites
 - Summary: Development and Evaluation of Fracture Mechanics Test Methods for Sandwich Composites

Background:

Notch Sensitivity of Sandwich Composites

 Notch sensitivity test methods for <u>monolithic composites</u> are reaching relatively high levels of maturity

In-plane loading: open hole tension, open hole compression

Out-of-plane loading: bending, out -of -plane shear (Parmigiani)

- Less attention to notch sensitivity tests methods of <u>sandwich</u> <u>composites</u>
 - Currently no standardized tests for notch sensitivity
- Failure prediction of notched <u>monolithic composites</u> is receiving considerable attention
 - Reduced focus on analysis of notched <u>sandwich composites</u>

RESEARCH OBJECTIVES: Notch Sensitivity of Sandwich Composites

- Initial development of notched test methods and associated analysis methodology for composite sandwich panels
- Assist in documenting notched testing and analysis protocols in Composite Materials Handbook (CMH-17) with Parmigiani group (OSU)
- Explore development of new ASTM standards:
 - Notched laminate tests under out-of-plane loading (with Parmigiani group,OSU)
 - Notch sensitivity tests for sandwich composites

Initial Focus:

Notch Sensitivity of Sandwich Composites

• Recruit graduate student!

– Mr. Marcus Stanfield, Ph.D. candidate

• Literature review

- Notch sensitivity test methods for sandwich composites
- Numerical simulations: notched sandwich composites
- Initial investigation: Notched sandwich testing and analysis
 - Open-hole compression test of sandwich composite
 - Progressive failure analysis using ABAQUS with NDBILIN progressive damage model (Materials Sciences Corp)

Previous Analyses using ABAQUS with NDBILIN: Failure Analysis of Stiffened Composite Panel

18

Progressive failure analysis of stiffened panel with idealized impact damage

-ABAQUS finite element code

- NDBILIN progressive damage user material subroutine

44322.11/2 EN60/02 9/18/12

Experimental validation using idealized impact damage

Outline

- Review: Damage Tolerance Test Method Development for Sandwich Composites
- Introduction: Notch Sensitivity of Sandwich Composites

Summary: Development and Evaluation of Fracture Mechanics Test Methods for Sandwich Composites

RESEARCH OBJECTIVES:

Fracture Mechanics Test Methods for Sandwich Composites

20

- Focus on facesheet-core debonding
- Mode I and Mode II
 - Identification and initial assessment of candidate test methodologies
 - Selection and optimization of best suited Mode I and Mode II test methods
 - Development of draft ASTM standards

UNIVERSI

OF UTAH

MODE I TEST CONFIGURATION: Single Cantilever Beam (SCB)

- Elimination of bending of sandwich specimen
- Minimal crack "kinking" observed
- Mode I dominant independent of crack length
- Appears to be suitable for standardization

MODE II TEST CONFIGURATION: End-Notched Sandwich Bend Test

- Three-point flexure and cantilever beam configurations
- High percentage Mode II (>80%) for all materials investigated
- Semi-stable crack growth along facesheet/core interface
- Appears to be suitable for a standard Mode II test method

CURRENT STATUS:

Fracture Mechanics Test Methods for Sandwich Composites

- Participation/Support of CMH-17 Sandwich Disbond Technical Committee
 - European meeting in Cologne Germany (EASA), July 2013
 - U.S. meeting next week in Hampton, VA Nov 20-21
- Completion of initial draft of Mode I SCB test method for ASTM standardization
- Documentation of findings
 - FAA Report
 - Journal publications

Thank you for your attention!

Questions?

A part of the FAA Joint Advanced Materials & Structures Center of Excellence