NOTCH SENSITIVITY OF COMPOSITE SANDWICH STRUCTURES

Dan Adams Marcus Stanfield Brad Kuramoto Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2014 Meeting Seattle, WA November 12, 2014

FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams
 Dr. Mike Czabaj
- Graduate Student Researchers:

Marcus Stanfield

Brad Kuramoto

- FAA Technical Monitor: Lynn Pham
- Collaborators:

Materials Sciences Corporation ASTM D30 Oregon State University

Outline

- Brief updates from previous sandwich composites research
 - Sandwich fracture mechanics
 - Sandwich damage tolerance
- Sandwich notch sensitivity investigation
 - Test method development
 - Numerical modeling progressive damage analysis

Status Update:

Mode I Sandwich Fracture Mechanics Test Method

Single Cantilever Beam (SCB) Test Method

- Draft ASTM standard completed!
- International round-robin test program initiated
 - 7 test labs with previous SCB testing experience
 - Baseline sandwich specimens to be fabricated by NIAR
- Included in sandwich disbond assessment initiative

Status Update: Sandwich Disbond Assessment Initiative

- Identify, describe and address the phenomenon associated with facesheet/core disbonding and core fracture
- Develop a methodology to assess facesheet/core disbonding in sandwich components
 - Coupon
 - Sub-element
- New sections in CHM-17 (Volume 6)

Seneviratne, W., "Fatigue Damage Growth Rate of Sandwich Structures using Single Cantilever Beam (SCB) Test," 2014 JAMS Technical Review

Status Update:

Development of Sandwich Damage Tolerance Test Methods

- Draft standards to be completed by March 2015 ASTM D30 meeting (Salt Lake City, UT)
- Follow-on "scaling" effort underway through Air Force SBIR program

Compression After Impact (CAI)

4-Point Flexure After Impact (4-FAI)

A Center of Excellence

Follow-On Sandwich Damage Tolerance Effort:

Scale-Up of Sandwich Damage Tolerance Test Results

- Collaborative research with Materials Sciences Corp. & Boeing
- Univ. of Utah focus on sandwich damage tolerance

Research Objectives: Notch Sensitivity of Sandwich Composites

- Initial development of notched test methods and associated analysis methodologies for composite sandwich panels
- Documentation notched testing and analysis protocols in Composites Materials Handbook (CMH-17) with Parmigiani group (OSU)
- Explore development of new ASTM standards for notch sensitivity of sandwich composites

Sandwich Open Hole Flexure

Testing Considerations: Sandwich Open Hole Compression

- Test fixture/Specimen support
 - End supports
 - Clamping top and bottom
 - Potting
 - Side supports
 - Knife edge
- Specimen size

- Production of acceptable strength reductions
- Specimen alignment
- Strain measurement

Open hole compression fixture for monolithic composites

> > OF UTAH

Advanced Materials in

A Center of Excellence

Analysis of Notched Sandwich Specimens ABAQUS with NDBILIN:

- User-defined nonlinear material model (UMAT) for ABAQUS
- Developed by Materials Sciences Corp.
- Stiffness degradation based progressive damage model
 - Lamina level stiffness degradation
 - Max. stress, max. strain or Hashin failure criteria for damage onset
 - Bilinear stiffness response used to model material damaged state
 - "Built in" laminated plate theory for elements

Failure Analysis of Notched Sandwich Specimens Development of Modeling Approach

- Modeling of damage progression in facesheets
 - Analysis of laminate open-hole <u>tension</u> test
 - Analysis of laminate open-hole <u>compression</u> test
- Modeling of damage progression in sandwich composites
 - Sandwich open hole compression test

Damage Progression in Facesheets: Analysis of Open Hole Tension Tests

Strength (psi)

- Simulation of open hole tension testing of IM7/8552 car epoxy laminates (ASTM D5766) $[0/90/\pm 45]_{28}$ $[45/0/-45/90]_{28}$ $[90/45/0/-45]_{28}$
- **Comparison with results from mechanical testing** 90000 -Ultimate strength

-Stress vs. strain plots

-Strain fields from **Digital Image Correlation**

Initial Analysis of Open Hole Tension Tests: **Comparison With Experimental Results**

- Good agreement for [0/90/±45]₂₈ laminate
- Not able to model measured strength reductions in other laminates

Follow-On Analysis of Open Hole Tension Tests: **Incorporation of Cohesive Elements**

- ABAQUS cohesive elements added between plies
- Good agreement with [45/0/-45/90]₂₈ and [90/45/0/-45]₂₈ laminates
- Not able to adequately model measured strength differences within laminates

Damage Progression in Facesheets: Open Hole Compression Testing & Analysis

- Mechanical testing of 1.5 in. wide specimen, 0.25 in. dia center hole (ASTM 6484)
- Three IM7/8552 carbon/epoxy laminates:

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

 $[0/90/\pm45]_{2S}$ $[45/0/-45/90]_{2S}$ $[90/45/0/-45]_{2S}$

Analysis of Open Hole Compression Tests: Comparison With Experimental Results

- **Over-prediction of strengths without cohesive elements**
- **Improved agreement with cohesive elements added between plies**
- **Under further investigation**

TH

OF UTAH

A Center of Excellence

Damage Progression in Sandwich Composites: Analysis of Sandwich Open Hole Compression Test

- IM7/8552 carbon/epoxy [0/90/0]_T facesheets
- 3 lb/ft³ 0.5 in. thick Nomex honeycomb core
- 4.5 in. wide x 6.0 in. tall specimens
- 0.75 in. central circular hole (W/D = 6)

UNIVERSI

OF UTAH

Initial Analysis: Sandwich Open Hole Compression Test

Comparison of $\boldsymbol{\varepsilon}_{v}$ Strain Fields (W/D = 6)

ABAQUS/NDBILIN Prediction

Digital Image Correlation Results

Initial Comparisons of Compression Strength: Sandwich Open Hole Compression Test

- Good agreement with measured stiffness
- Over-prediction of notched compression strength
- Currently incorporating facesheet/core cohesive elements

Current Focus: Investigating Effects of Notch Size (W/D Ratio)

- Resized specimen to 4.0 in. x 6.0 in. (ASTM D 7137 - CAI)
- Investigate additional hole diameters
 - 1/2 in. dia (W/D = 8)
 - 2/3 in. dia (W/D = 6)
 - 2 in. dia (W/D = 2)

- Differences in anticipated failure progressions
- Separation of central hole and boundary effects

No Hole W/D = 8 W/D = 6 W/D = 2

Initial (Recent) Results: Effect of Notch Size on Compression Strength

- Three specimens for each condition
- Stain profiles obtained using Digital Image Correlation
- Numerical modeling underway

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Upcoming Work: Sandwich Open Hole Flexure Test

- Sandwich specimens dimensioned according to long-beam flexure test method, ASTM D7249
- Proposed sandwich configuration:
 - Carbon/epoxy facesheets, ½ in. Nomex honeycomb core
 - 0.5 in. diameter central circular hole
 - 3 in. width x 24 in. length (standard configuration)
 - 4 in. central test section
 - 22 in. span
 - 1 in. maximum displacement (predicted)

Thank you for your attention!

Questions?

