DURABILITY OF ADHESIVELY BONDED JOINTS FOR AIRCRAFT STRUCTURES

Dan Adams Larry DeVries Clint Child Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2011 Meeting Edmonds, WA November 1, 2011

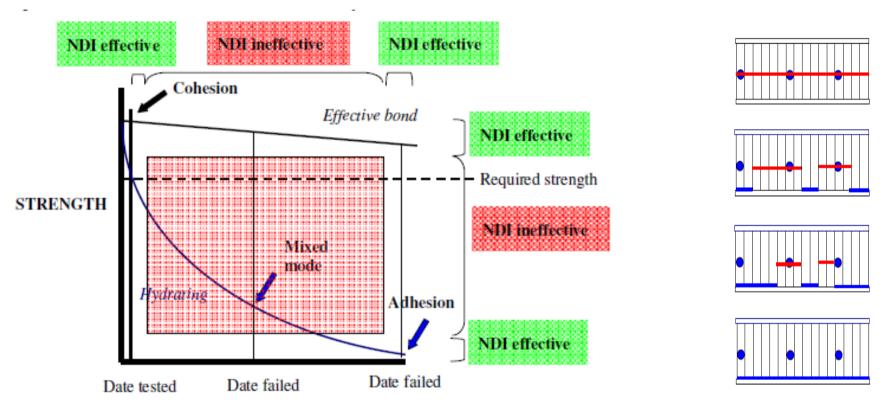
FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams Dr. Larry DeVries
- Graduate Student Researcher: Clint Child
- FAA Technical Monitor: David Westlund
- Primary Collaborators:
 - Boeing: Kay Blohowiak and Will Grace
 - Air Force Research Laboratory: Jim Mazza

Adhesive Bonding Group Research Tasks

- I. Composite bond surface characterization
- II. Composite bond integrity and long-term durability testing of composite bonds
- III. Revising the ASTM D 3762 metal wedge crack durability test

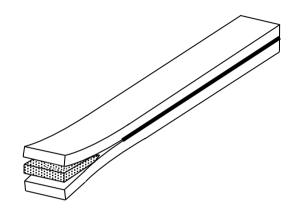
Background: Metal Wedge Crack Durability Test


ASTM D 3762, "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

- Bonded aluminum double cantilever beam specimen is loaded by forcing a wedge between the adherends
- Wedge is retained in the specimen
- Assembly placed into a test environment
 - Aqueous environment
 - Elevated temperature
- Further crack growth is measured following a prescribed time period

AREA OF CONCERN: Reduction in Bond Strength Through Hydration

TIME


Davis, M.J., and McGregor, A. "Assessing Adhesive Bond Failures: Mixed-Mode Bond Failures Explained," I SASI Australian Safety Seminar, Canberra, 4-6 June 2010.

GENERAL PERCEPTIONS: Current ASTM D 3762 Standard

- Well-suited test methodology for assessing adhesive bond durability
- Standard includes a good description of test specimen

- Additional guidance needed in specimen manufacturing
- More detail required in test procedure
- Lacking sufficient guidance regarding conditions and requirements that constitute an acceptable metal bonded joint

FROM THE LITERATURE: Investigations Involving ASTM D 3762

- Effects of surface preparation on durability
 - Most common investigation
 - Create surface and bond that is *hydration resistant*
- Comparison of adhesive durability
- Comparison of environment severity
- Establishment of acceptance criteria
- Predict long term behavior of adhesive joints

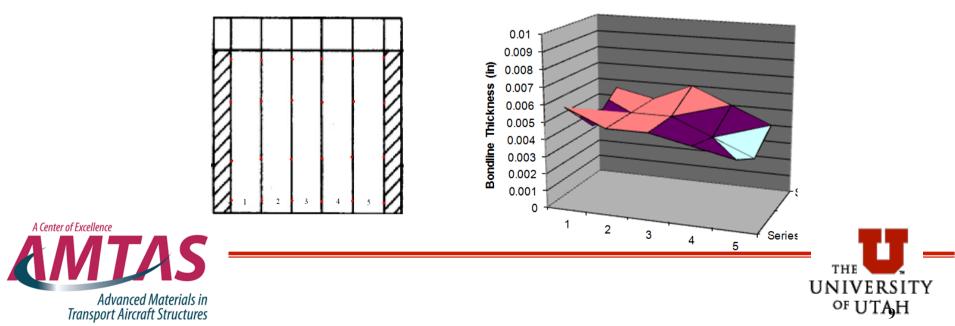
CURRENT QUESTIONS/CONCERNS: ASTM D 3762 Wedge Test

Specimen Manufacturing

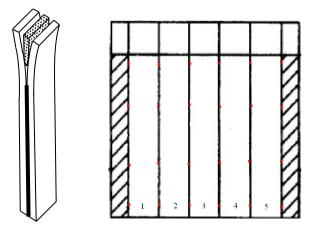
- Controlling bondline thickness
- Machining specimens from panel

Testing Procedure

- Method of wedge insertion
- Measurement of initial crack length
- Specimen orientation during testing
- Specification of test environment
- Identification of failure mode



CURRENT QUESTIONS/CONCERNS: Controlling Bondline Thickness

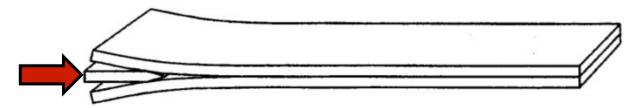

- Uniform bondline thickness believed to be important for durability testing
- Without precautions, different bondline thicknesses will likely result across panel

Can guidance be placed into standard?

CURRENT QUESTIONS/CONCERNS: Cutting Panel into Test Specimens

- Many methods in use
 - Band saw and mill
 - Gang saw
 - Water jet cutting
 - -???

- Are all current methods acceptable?
- What are current best practices?
- Can guidance be placed into standard?

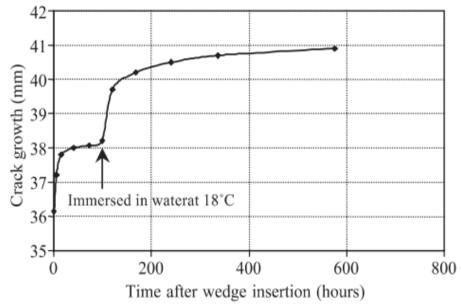

CURRENT QUESTIONS/CONCERNS:

Method of Wedge Insertion

• Guidance from ASTM D 3762:

"Open the end of the test specimen that contains the separation film, and insert the wedge" **"Tappers" vs. "Thumpers"**

Encourage gentle hammering? Effect on initial crack length?



CURRENT QUESTIONS/CONCERNS: Measurement of Initial Crack Length

When is initial crack length measurement made?

- ASTM D3762

- Immediately after wedge insertion
- TTCP AG13
 - One hour after wedge insertion

Sargent (2005)

How do we ensure crack equilibrium before subjecting specimen to test environment?

art of the FAA Joint Advanced Materials & Structures Center of Excellence

CURRENT QUESTIONS/CONCERNS: Specimen Orientation During Testing

- Orientation of specimen during testing is not specified in ASTM D3762
- TTCP AG13 suggests that orientation be specified
- Four Possible Orientations...
- Is one preferred?
- Required?
- Does it matter?

CURRENT QUESTIONS/CONCERNS:

Guidance on Suitable Test Environment

• ASTM D3762:

- "A typical accelerated aging environment commonly used is 50°C (122°F) and condensing humidity."
- TTCP AG13
 - 50°C (122°F), 95% RH (non-condensing)

• Industry users (aerospace):

- Dependent on intended use, type of adhesive being tested
 - 120°F, 140°F, 160°F
 - 24 hrs, 7 days, 1 month

Test Environment Number	Temperature, °C (°F) ^A	Moisture Conditions % Relative Humidity ^e
1	23 (73.4)	immersed in distilled or deionized water
2	23 (73.4)	-50
3 3	23 (73.4)	15
4	35 (95)	.90
5	35 (95)	-100 · · · · · · · · · · · · · · · · · ·
6	50 (122)	90
7	50 (122)	100
8	60 (140)	100
9	71 (160)	100
10	35 (95)	5 % salt fog
11.	ambient (outdoors)	ambient (outdoors)
12	other (specify)	other, including aqueous solutions or nonaqueous liquids (specify)

From ASTM D3762

- How should user choose environment?
- Can guidance be placed into standard?

CURRENT QUESTIONS/CONCERNS: Acceptance Criteria

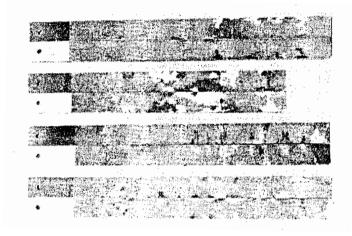
Crack Growth

Currently in ASTM D3762:

- *"Typically good durability surface preparation is evidenced by..."* For five specimens, 122°F and condensing humidity:
 - Average $\Delta a < 0.25$ in. after 1 hour
 - Max $\Delta a < 0.75$ in. after 1 hour

Recommended by TTCP AG13:

For five specimens: 122°F and 95% relative humidity (non condensing):


- Average $\Delta a < 0.20$ in. after 24 hours
- Average $\Delta a < 0.25$ in. after 48 hours

Can updated examples and guidance be placed into standard?

CURRENT QUESTIONS/CONCERNS: Evaluation of Failure Mode

- ASTM D 3762:
 - "Failure mode is to be reported"
 - No mention of failure mode in regards to acceptance criteria
- TTCP AG13:
 - "The surface generated during exposure must not exhibit greater than 10% adhesion (interfacial) failure."

McMillan (1979)

- Can acceptability be made to be dependent on proper failure mode?
- What percentage of adhesion failure is acceptable?
- How should failure mode percentage be determined?

INVESTIGATING POSSIBLE REVISIONS:

Current Experimental Program

Specimen Preparation

- Controlling bond line thickness
- Machining specimens from panel

Test Procedure

- Start at beginning of test procedure so that considerations "down the line" are not affected
 - Method of Wedge Insertion
 - Measurement of Initial Crack Length
 - Specimen Orientation

Other Noteworthy Events

October 11-12th, 2010 San Antonio, TX:

- **Co-PI Larry DeVries attends ASTM D 14 Committee Meeting**
- Introduces project to key committee members

October 5th, 2011 Seattle, WA:

• PI Dan Adams and grad. student Clint Child meet with Max Davis and Boeing personnel to discuss proposed revisions to ASTM D 3762

Yesterday Tampa, FL

- PI Dan Adams presents overview of proposed ASTM D3762 revisions to ASTM D 14 Committee
- Positive response
- Asked to start Work Item, lead Task Group

Summary

- Several key user groups of ASTM D 3762 (metal wedge crack durability test) have been identified and consulted
- Several areas of possible improvement to ASTM D 3762 have been identified
- Experimental program underway to provide results required to support test method revisions
- Encouraging response from ASTM Committee D14 on Adhesives

