DURABILITY OF ADHESIVELY BONDED JOINTS:

REVISING THE WEDGE CRACK DURABILITY TEST

Dan Adams Larry DeVries Clint Child Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2012 Meeting Seattle, WA October 31, 2012

FAA Sponsored Project Information

- Principal Investigators: Dr. Dan Adams Dr. Larry DeVries
- Graduate Student Researcher: Clint Child
- FAA Technical Monitor: David Westlund
- Primary Collaborators:
 - Boeing: Kay Blohowiak and Will Grace
 - Air Force Research Laboratory: Jim Mazza

Background: Metal Wedge Crack Durability Test

ASTM D 3762, "Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)"

- Bonded aluminum double cantilever beam specimen is loaded by forcing a wedge between the adherends
- Wedge is retained in the specimen
- Assembly placed into a test environment
 - Aqueous environment
 - Elevated temperature
- Further crack growth is measured following a prescribed time period

GENERAL PERCEPTIONS: Current ASTM D 3762 Standard

- Well-suited test methodology for assessing adhesive bond durability
- Standard includes a good description of test specimen

- Additional guidance needed in specimen manufacturing
- More detail required in test procedure
- Lacking sufficient guidance regarding conditions and requirements that constitute an acceptable metal bonded joint

REVISION OF WEDGE TEST METHOD: Primary Areas Identified

Editorial Revisions

- Clarification of geometry
- Correction of procedure problems
- Improvement of figures

Specimen Preparation

- Controlling bondline thickness
- Machining specimens from panel

Testing Procedure

- Method of wedge insertion
- Measurement of initial crack length
- Specimen orientation during testing
- Specification of test environment

Interpretation of Results

- Role of initial crack length
- Role of crack growth
- Role of failure mode in test area

REVISION OF WEDGE TEST METHOD: Possible Levels of Additional Guidance

For the specimen/test parameter of interest, options include...

- <u>Inform</u> users that variations can affect results
- <u>Report</u> the value of the parameter used
- <u>Suggest</u> a value or range of values of the parameter
- <u>Require</u> a value or range of values of the parameter

REVISION OF WEDGE TEST METHOD: Wedge Insertion Method

- "Tappers" vs. "Thumpers" Wedge Insertion Rate
 - Three surface preparations investigated:
 - Ideal: PAA & prime
 - Weak: PAA w/o prime, grit blast & prime

Suggest?

"Ideal" Bonding

- No statistically significant effect on:
 - Initial crack length
 - Ambient crack growth
 - Environmental crack growth

"Weak" Bonding

- Statistically significant effect on:
 - Initial crack length
 - Ambient crack growth
 - Environmental crack growth

REVISION OF WEDGE TEST METHOD: Specimen Orientation

- Investigate effect of specimen orientation during environmental exposure
 - Three surface preparations:
 - Ideal: PAA & prime
 - Weak: PAA w/o prime, grit blast & prime
- No statistically significant effect for any of the surface preparations

Advanced Materials in

Transport Aircraft Structures

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Suggest

Require?

REVISION OF WEDGE TEST METHOD: Guidance on Selection Of Test Environment

• Humidity

- ASTM D3762
 - Condensing humidity
- TTCP AG13 suggests
 - 95% RH noncondensing
- What role does humidity play?
- Temperature
 - 50°C, 60°C, or 70°C
 - What rode does temperature play?

• Duration

- Hour, day, week, month, or year
- What role does duration play?

Test Environment Number	Temperature, ⁰C (ºF) ^A	Moisture Conditions % Relative Humidity ^B
1.1.1.1	23 (73.4)	immersed in distilled or deionized water
2	23 (73.4)	50
3 3 3	23 (73.4)	15
4	35 (95)	90
5	35 (95)	100 • • • • • • • • • • • • • • •
6	50 (122)	90 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
7	50 (122)	100
8	60 (140)	100 and a second second second
	71 (160)	100 ·
10	35 (95)	5 % salt fog
11	ambient (outdoors)	ambient (outdoors)
12	other (specify)	other, including aquecus solutions or nonaqueous liquids (specify)

^AThe tolerance for test temperature shall be \pm 1°C or 1.8°F for environments 1 to 10.

^BThe moisture condition may be provided by controlling the relative humidity of a box, room, or other chamber by any convenient means.

REVISION OF WEDGE TEST METHOD: Acceptance Criterion

- Current example acceptance criterion
 - "Typically good durability surface preparation is evidenced by no individual specimen having a crack extension, Δa, exceeding 19 mm (0.75 in.) with the average of all specimens not over 6.3 mm (0.25 in.), when placed in 50°C (122°F) condensing humidity for 1 h."
- Crack Extension
 - Mentioned but not restrictive enough
 - What amount/range of growth is acceptable?
- Failure Mode
 - Not mentioned!
 - Strong indicator of a durable bond

What level (percentage) of cohesion failure acceptable?

BONDLINE THICKNESS EFFECTS

- From literature review: Bondline thickness can affect specimen performance
- No mention of bondline thickness control in ASTM standard
- Approach: Create multiple bondline thicknesses
 - Thickness gradient across panel
 - Constant thickness in panel with multiple panels
 - Adhesive: AF 163-2K film adhesive
 - Surface Preparation: PAA with BR 6747-1 bond primer
- Document effects:
 - Crack growth
 - Failure mode

Bondline Thickness: Uniform Panel

Bondline Thickness: Gradient Panel

BONDLINE THICKNESS EFFECT: Initial & Final Crack Length

- Increasing the bondline thickness results in:
 - Decreased initial crack length (Immediately following wedge insertion)
 - Decreased final crack length (7 day exposure @ 50°C, 100%RH)

BONDLINE THICKNESS EFFECT: Environmental Crack Growth

- 7 day exposure at 50°C and 100%RH
- Increasing bondline thickness decreases environmental crack growth

Environmental Crack Growth vs. Bondline Thickness

BONDLINE THICKNESS EFFECT: Failure Mode

Increasing bondline thickness increases percent cohesion failure

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

BONDLINE THICKNESS EFFECT: Summary of Results

- Increasing bondline thickness decreases:
 - **Initial crack length**
 - **Final crack length** lacksquare
 - **Environmental crack growth**
 - Adhesion failure / interfacial failure
- Significant effect on acceptance criteria?
 - Environmental crack growth not greatly affected
 - Failure mode affected significantly

Uniformity of bondline thickness is important!

Report Suggest

CURRENT FOCUS: Use of Different Types of Adhesives

- Perform wedge testing with a second adhesive: FM 300 film adhesive
- Investigate differences between *low toughness* (high strength) and *high toughness* adhesives
 - Different initial crack lengths
 - Differences in importance of specimen preparation and testing parameters

LOOKING AHEAD: Development of a Wedge Test For Adhesively Bonded Composite Laminates

Complexities associated with a composite wedge test include:

- Flexural stiffness of composite adherends
 - Must be within a specific range

OR

- Must tailor wedge thickness for specific composite adherends
- Fiber orientation adjacent to bonded interface

The need for a bonded composites durability test is just as great as it was for metal bonding 20 years ago."

- John Hart-Smith

International Journal of Adhesion and Adhesives, 1999

