DAMAGE TOLERANCE TEST METHOD DEVELOPMENT FOR SANDWICH COMPOSITES

Dan Adams

Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2012 Meeting Seattle, WA October 31, 2012

FAA Sponsored Project Information

- Principal Investigator: Dr. Dan Adams
- Graduate Student Researcher:
 - Brad Kuramoto
- FAA Technical Monitor
 - David Westlund
- Collaborators:

Boeing Materials Sciences Corporation

BACKGROUND:

Damage Tolerance Test Methods for Sandwich Composites

- Damage tolerance test methods for monolithic composites have reached a relatively high level of maturity
 - Damage Resistance: ASTM D 7136 Drop-Weight Impacting
 - Damage Tolerance: ASTM D 7137 Compression After Impact
- Less attention to sandwich composites...until recently
 - SAMPE/ASTM D30 Panel at Joint Meeting October 2009

"Damage Resistance and Damage Tolerance of Sandwich Structures"

Dan Adams, organizer, panelist Carl Rousseau, moderator

- ASTM D30 publishes standard for sandwich damage resistance

• ASTM D7766 (2011) "Standard Practice for Damage Resistance Testing of Sandwich Constructions"

- SAMPE/ASTM D30 Panel at Joint Meeting October 2011

"Damage Resistance of Composite Sandwich Structures"

Dan Adams, organizer

Carl Rousseau, moderator

RESEARCH OBJECTIVES:

Damage Tolerance Test Methods for Sandwich Composites

- Evaluate candidate test methodologies
- Develop a standardized ASTM test method
- Compare residual strength results of sandwich panels using proposed test methods
- Investigate scaling of test results

Where Do We Start?

What is the intended usage of a damage tolerance test method for sandwich composites?

- Quality Assurance
- Material ranking/selection/specification
- Establishing design properties/allowables
- Research and development activities
- Product development
- Other?

Intended Usage Likely to Affect Type of Test Method

Intended Usage Likely to Affect Test Method

• Material ranking/selection/specification Specify a sandwich panel configuration

Example: D 7137: Specified lay-up and target laminate thickness for CAI testing

- Establishing design properties/allowables
 - Allow a wide range of sandwich panel configurations

Example: C 364: Edgewise compression strength of sandwich panels

Development of an ASTM Standard:

Damage Tolerance of Sandwich Composites

Process Includes:

- Review of Similar/Relevant Standards
- Establish intended usage(s)
- Develop suitable test fixturing
- Establish suitable range of sandwich configurations
 - Facesheet parameters
 - Core parameters
- Specify suitable specimen geometries
- Develop proper test procedures

CANDIDATE TEST CONFIGURATIONS: Damage Tolerance of Sandwich Composites

Edgewise Compression

- Preferred DT test method for monolithic laminates
- High interest level for sandwich composites

Four-Point Flexure

- Constant bending moment and zero shear in damaged section of panel
- Damaged facesheet can be placed under compression or tension

Pressure Loading

- Simply supported sandwich panel
- Distributed load
- Of interest for pressure loaded applications

INITIAL EXPERIMENTAL EVALUATION: Use of Idealized Impact Damage

- G11 glass/epoxy facesheets & Nomex honeycomb core
- "Idealized" damage: 1 in. and 3 in. hole in facesheet
- Develop a recommended procedure for each method
- Initial assessment of damage tolerance
 - Develop familiarity with each test method
 - Identify additional issues requiring investigation
 - Initial assessment of each test method
 - Identification of test method limitations

Edgewise Compression Testing For Damage Tolerance: Testing Considerations

- Specimen size Scaling
- Test fixture
 - End supports
 - Clamping of top and bottom
 - Potting of core
 - Side edge supports
 - Knife edge (pinned)
 - Clamped (reduce rotation)
- Method of specimen alignment
- Strain measurement
 - Alignment
 - Determination of load paths

Edgewise Compression Testing For Damage Tolerance: Initial Evaluations

- G11 glass/epoxy facesheets & Nomex honeycomb core
- "Idealized" damage 1 in. & 3 in. hole in one facesheet

Failure of specimen with no damage

Failure of specimen with 1 in. hole

Four-Point Flexure Testing For Damage Tolerance: Testing Considerations

- Location of damage: tension or compression loading?
- Sandwich panel dimensions (length & width)
- Required length of central test section (damage region) of panel
- Required length of outer regions to develop bending moment
- Core requirements for shear stress outer panel sections
- Facesheet /core requirements at loading points

Four-Point Flexure Testing For Damage Tolerance: Initial Evaluation

Undesirable failures in no-damage specimens

- Shear failure of honeycomb core in outer regions
 - Fill honeycomb cells
 - Substitute higher strength core
- Localized failure at loading points
 - Distribute load over larger area
 - Fill honeycomb cells

Uniform Pressure "Hydromat" Test Based on Existing Standard: ASTM D 6146

- Simulates hydrostatic pressure loading
- Pressure loading of sandwich panel using pressure bladder
- Test machine used to press bladder against test panel
- Quasi-static or cyclic fatigue loading
- Size of sandwich panel dependent on sandwich properties

Upper Panel Support

Structure

Load Cell

Corner Bolts

• Current usage primarily in marine industry

Frame

Hydromat Testing For Damage Tolerance: INITIAL EVALUATION

Testing currently underway

- Idealized damage located on tensionloaded facesheet
- Sandwich specimen simply supported by the upper and lower panel support
- Specimen loaded by lowering assembly onto the pressure bladder

SUMMARY Benefits to Aviation

- Standardized damage tolerance test method for sandwich composites
- Test results used to predict damage tolerance of sandwich composites
- Scaling of test results for application on composite sandwich structures

A part of the FAA Joint Advanced Materials & Structures Center of Excellence