DEVELOPMENT AND EVALUATION OF FRACTURE MECHANICS TEST METHODS FOR SANDWICH COMPOSITES

Dan Adams

Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2012 Meeting Seattle, WA October 31, 2012

FAA Sponsored Project Information

- Principal Investigator: Dr. Dan Adams
- Graduate Student Researchers:
 Ryan Braegger Zach Bluth
- FAA Technical Monitor

 Curt Davies
 David Westlund
- Collaborators:

NASA Langley Boeing Airbus

NIAR Learjet UTC Aerospace Systems

RESEARCH OBJECTIVES:

Fracture Mechanics Test Methods for Sandwich Composites

- Focus on facesheet-core debonding
- Mode I and Mode II
 - Identification and initial assessment of candidate test methodologies
 - Selection and optimization of best suited Mode I and Mode II test methods
 - Development of draft ASTM standards

MODE I TEST CONFIGURATION: Single Cantilever Beam (SCB)

- Elimination of bending of sandwich specimen
- Minimal crack "kinking" observed
- Mode I dominant independent of crack length
- Appears to be suitable for standardization

PARAMETERS INVESTIGATED: Single Cantilever Beam (SCB) Test

- Specimen geometry
 - Length
 - Width
 - Initial crack length
- Facesheet properties
 - Thickness
 - Flexural stiffness
 - Flexural strength
- Core properties
 - Thickness
 - Density
 - Stiffness
 - Strength

- Mode mixity
 - Variations across specimen width
 - Variations with crack length
- Data reduction methods
- Thru-thickness crack placement
- Anticlastic curvature & curved crack
 front
- Large rotations of facesheet
- Use of facesheet doublers
- Facesheet curvature effects

SCB TEST METHOD DEVELOPMENT: Sandwich Configurations with Thin Facesheets

Concern: Excessive facesheet rotation

- Not representative of disbond in actual sandwich structures
- Geometric nonlinearity causes errors when using conventional data reduction method

Possible Solution: Use of facesheet doublers

- Reduce facesheet rotation required for disbonding
- Allow use of compliance calibration method of data reduction

EFFECTS OF FACESHEET DOUBLER:

Different Doubler Thicknesses Produce Different G_c Values...

...and different thru-thickness fracture locations!

NUMERICAL INVESTIGATION

Effects of Thin Facesheets & Facesheet Doublers

- Load applied in each model to produce same G_T value
 - No doubler, "thin" doubler, "thick" doubler
- Consider crack growth at three through-the-thickness locations
- Investigate mode mixity (% G₁)

A Center of Excellence

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

 Investigate orientation of max. principal stress for expected crack growth direction

FACESHEET DOUBLER EFFECTS: No Doubler

Facesheet	
	Crack
Core	

Crack at interface

FACESHEET DOUBLER EFFECTS:

SUMMARY OF FINDINGS:

Numerical Investigation

- SCB test appears to be Mode I dominant for all cases considered
- Mode II component produced by shear stresses in vicinity of crack tip
- Sign of shear stresses change as a function of:
 - Thickness of facesheet
 - Crack location in core
- Crack predicted to propagate closer to facesheet/core interface for thinner facesheets
- Use of doublers to reduce facesheet rotation is not recommended

EFFECTS OF FACESHEET CURVATURE: Use of Climbing Drum Peel (CDP) Test

- Facesheet curvature during SCB testing is dependent on facesheet thickness
- High curvature produced with thin facesheets not representative of that seen in sandwich structures with disbonds
- Use of Climbing Drum Peel test permits testing with prescribed facesheet curvature

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

DETERMINATION OF ENERGY RELEASE RATE, G_c: Climbing Drum Peel (CDP) Test

A.T. Nettles, E.D. Gregory and J.R. Jackson, "Using the Climbing Drum Peel (CDP) Test to Obtain a GIC Value for Core/Face Sheet Bond," *Journal of Composite Materials*, Vol 41, 2007. ТΒ

UNIVERSI

OF UTAH

Single Cantilever Beam (SCB) Versus Climbing Drum Peel (CDP)

9 Ply ("Thick") Facesheet

Single Cantilever Beam (SCB) Versus Climbing Drum Peel (CDP)

6 Ply ("Medium") Facesheet

Single Cantilever Beam (SCB) Versus Climbing Drum Peel (CDP)

3 Ply ("Thin") Facesheet

Effect of Facesheet Thickness: Single Cantilever Beam (SCB) Specimens

Effect of Facesheet Thickness: Climbing Drum Peel (CDP) Specimens

SUMMARY OF PRELIMINARY FINDINGS: Climbing Drum Peel Testing

- G_c measurements from Climbing Drum Peel and Single Cantilever Beam tests in agreement for thicker facesheets
- G_c measurements from Single Cantilever Beam tests are reduced for thin facesheets
- Slight through-thickness difference in fracture location with facesheet thickness for both test methods

CURRENT FOCUS: Effects of Facesheet Curvature on Apparent G_c

Preliminary design of a large radius Climbing Drum Peel fixture

MODE II TEST CONFIGURATION: Edge-Notched Sandwich Configurations

THE UNIVERSITY OF UTAH

MODE II END NOTCHED CANTILEVER TEST: Symmetrical Bending Version of 3-ENF

End Notched Flexure

(Unsymmetric bending)

End Notched Cantilever

(Symmetric bending)

PROPOSED MODE II CONFIGURATION End Notched Cantilever (ENC) Test

- Cantilever beam configuration
- Can be loaded upward (tension) or downward (compression)
- Predicted performance meets or exceeds that of 3-ENF configuration for all sandwich configurations considered to date
- Improved crack growth stability
- Appears to be suitable for a standard Mode II test method

SUMMARY

Benefits to Aviation

- Standardized fracture mechanics test methods for sandwich composites
 - Mode I fracture toughness, G_{IC}
 - Mode II fracture toughness, G_{IIC}
- Test results used to predict disbond growth in composite sandwich structures

