DEVELOPMENT AND EVALUATION OF FRACTURE MECHANICS TEST METHODS FOR SANDWICH COMPOSITES

Dan Adams Department of Mechanical Engineering University of Utah Salt Lake City, UT

AMTAS Autumn 2011 Meeting WA November 1, 2011

Edmonds, WA

FAA Sponsored Project Information

- Principal Investigator: Dr. Dan Adams
- Graduate Student Researchers:

Joe Nelson	Zack Bluth
Josh Bluth	Brad Kuramoto
Chris Weaver	Andy Gill

- FAA Technical Monitor
 - Curt Davies David Westlund
- Primary Collaborator:
 - NASA Langley Research Center (James Ratcliffe)

RESEARCH OBJECTIVES:

Fracture Mechanics Test Methods for Sandwich Composites

- Focus on facesheet-core delamination
- Mode I and Mode II
 - Identification and initial assessment of candidate test methodologies
 - Selection and optimization of best suited Mode I and Mode II test methods
 - Development of draft ASTM standards

UNIVERS

OF UTAH

SELECTED MODE I CONFIGURATION: Single Cantilever Beam (SCB) Test

- Elimination of bending of sandwich specimen
- Minimal Mode II component (less than 5%)
- No significant bending stresses in core
- No crack "kinking" observed
- Appears to be suitable for a standard test method

PARAMETERS INVESTIGATED: Single Cantilever Beam (SCB) Test

- Specimen geometry
 - Length
 - Width
 - Initial delamination length
- Facesheet properties
 - Thickness
 - Flexural stiffness
 - Flexural strength
- Core properties
 - Thickness
 - Density
 - Stiffness
 - Strength

OF UTAH

RECENT EFFORTS:

Single Cantilever Beam Test for Sandwich Composites

- Establishment of recommended specimen width
 - Anticlastic curvature and curved crack fronts
 - Minimum number of honeycomb cells
- Effects of thru-thickness placement of starter crack
- Procedures for testing sandwich configurations with "thin" facesheets
 - Excessive facesheet rotation
 - Problems with using compliance calibration method
 - Use of doublers

RECOMMENDED SPECIMEN WIDTH: Anticlastic Curvature and Curved Crack Fronts

Foam Core Sandwich Specimens with Quasi-Isotropic Facesheets

51 mm (2 in) selected as recommended specimen width

RECOMMENDED SPECIMEN WIDTH: Minimum Number of Honeycomb Cells

Nomex Honeycomb Core, 3/8 in. Honeycomb Cell Size

Minimum of 6 honeycomb cells across specimen width

- Most honeycomb cores will have at least 6 cells across width
- Width can be increased for larger-celled honeycomb cores

EFFECTS OF STARTER CRACK PLACEMENT: Predicted Mode Mixity

- Modeled with and without an adhesive layer
- Four crack locations:
 - Facesheet/core interface (no adhesive)
 - Within adhesive
 - Above adhesive
 - Below adhesive
- Initial results: no effect on mode mixity
- Further investigation underway

SCB FACESHEET THICKNESS EFFECTS: Thin Facesheets

Thin facesheets create inaccuracies when using conventional compliance calibration method

$$C_{\text{SCB}} = \frac{\delta}{P} = \frac{4\lambda}{k} \left[\frac{\lambda^2 a^3}{3} + \lambda^2 a^2 F_1 + \lambda a F_2 + \frac{3ak}{10\lambda G_{xz,f} t_f b} + \frac{F_3}{2} \right]$$

Ratcliffe J. and Reeder, J., "Sizing A Single Cantilever Beam Specimen for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure, to appear in Journal of Composite Materials, 2011.

SCB FACESHEET THICKNESS EFFECTS: Adding Tabbing "Doublers" to Thin Facesheets

Geometrically nonlinear FE simulation of compliance calibration method

A CENTER OF EXCENTION Advanced Materials in Transport Aircraft Structures Adding tabbing doublers to upper facesheet predicted to increases accuracy of G_{IC} calculation

USE OF FACESHEET DOUBLER: Preliminary Test Results

Different crack locations:

- <u>Thick-tabbed:</u> crack growth in core at the base of adhesive fillets
- <u>Thin-tabbed:</u> crack growth in in vicinity of adhesive/core interface
- <u>Untabbed:</u> crack growth in film adhesive

USE OF FACESHEET DOUBLER: Preliminary Test Results

Different failure locations produces different fracture toughness values

CURRENT FOCUS: Single Cantilever Beam (SCB) Test

- Further investigation: Effects of thru-thickness location of starter crack
- Further investigation: Effects of facesheet thickness variations and doublers on crack location and fracture toughness
- Composing draft ASTM standard

SELECTED MODE II CONFIGURATION: End Notched Sandwich (ENS) TEST

- Modified three-point flexure fixture
- High percentage Mode II (>80%) for all materials investigated
- Semi-stable crack growth along facesheet/core interface
- Appears to be suitable for a standard Mode II test method

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

MODE II END NOTCHED SANDWICH TEST: Numerical Investigations Performed

- Mode mixity of crack growth (% G_{II})
- Specimen width effects
- Facesheet thickness effects
 - Adding doubler to lower facesheet
- Crack growth stability
 - Specimen length effects
 - Precrack length effects

ADDRESSING CRACK GROWTH STABILITY:

Specimen Span Length and Precrack Length

- Selection of proper precrack length/span length expected to produce stable crack growth
- Experimental investigation underway

Required Displacement for Crack Growth

TOWARDS STANDARDIZATION...

Presentation and discussion at ASTM Committee D30 on Composites every six months

• Last presentation: October 18, 2011 in Ft. Worth TX

Overview presentations at CMH-17 Testing Working Group

• Next presentation: November 15, 2011 in Wichita, KS

Performing SCB testing at the University of Utah for interested parties

