

Engineering, Operations & Technology Boeing Research & Technology

Boeing's Certifiable Primary Structural Bonding Initiative

March 16, 2010

- Principal Investigator & Requirements Dev
- Robust Bonding Materials and Processes
- Non-Destructive Inspection
- Design and Analysis
- Sustainment / Repair

Marc J. Piehl Kay Blohowiak Dick Bossi Matt Dilligan Rusty Keller ATF Structures TF M&PT STF NDE Senior Analyst TF Supportability

Additional Boeing Key Team Members

Will Grace, Gerry Mabson, Mark Wilenski, Derek Fox, Alan Prichard, Charlie Saff, Eric Cregger, Doug Frisch, Gerardo Pena, Eugene Dan-Jumbo

- Bonding Certification Approach Development at Boeing
- AMTAS related tasks and their Impacts on Boeing -UW Prof. Brian Flinn
 - -FIU Dwayne McDaniel
 - -UW Prof. Kuen Lin

(FAA Technical Monitors Curtis Davies, Larry Ilcewicz and David Westlund)

Bonding Path Forward in AMTAS-Boeing relationship

Boeing Approach to Bonding Certification

Engineering, Operations & Technology | **Boeing Research & Technology**

Structural Technology

Supportability and Repair

Linked Requirements

Advanced Design / Analysis

Advanced NDE Techniques LBID

Para

Affordable Bonding Processes

Reliable Bonding Processes Parameters

Fault Tree Analysis Bonded Skin to Rib Joint

Engineering, Operations & Technology | **Boeing Research & Technology**

Structural Technology

Fault Tree Analysis provides both data to assess the critical bonding parameters and flexibility to optimize the reliability

Reliable Bonding Materials and Processes

Engineering, Operations & Technology | **Boeing Research & Technology**

Structural Technology

Boeing Need:

Controlled Process Parameters

Assess effects of process parameter changes

- •Materials aging: shelf-life and storage conditions
- •Batch-to-batch differences
- •Out-time effects
- •Tape vs. fabric
- •Thermal and hydrothermal conditioning •Cure conditions

Efficient In-Line QC Methods

- Develop techniques to assess quality of bonding steps in mfg
 - •In-line surface preparation assessment tools
 - •Analytical tools to assess surface chemistry
 - •Process control as measured by surface features or materials condition

AMTAS Support:

WASHINGTON

•Define key factors for making good/poor bonds •How to predict material surface prep compatibility •Develop correlation between surface contact angle and bond quality •In-line contact angle surface analysis

•AFM Tool

- •Detect contamination
- on surface
- •Map laminate surface
- •Electrochemical Tool
 - Contamination
 - detection
 - In-field tool development

Robust Bonding M&P Collaborative Activity

Arrestment Feature Performance Advanced Analysis and Testing

Engineering, Operations & Technology | **Boeing Research & Technology**

Structural Technology

Arrestment Features are a key parameter to certifying Transport Bonded Primary Structure

Copyright © 2009 Boeing. All rights reserved.

Disbond / Delamination Arrest Mechanisms

Engineering, Operations & Technology | **Boeing Research & Technology**

Structural Technology

Mode I: FEM vs. Analytical Fracture Analysis

Mode II: FEM vs. Analytical Fracture Analysis

Design Curves - Identify key variables for design, opt. and certification

Path Forward - AMTAS / Boeing Relationship

Certification of Bonded

Primary Structure

Understand design

requirements and

specify criteria

Engineering, Operations & Technology | Boeing Research & Technology

Structural Technology

AMTAS Activity

Boeing Needs

Damage Tolerance

Crack Arrest Fail safety

Process Control

Establish process reliability value Surface energy Understand Bonding Process and convert to process criteria

Project 3 – surface characterization

Project 1 – disbond

arrestment modeling

In-Line Quantitative QC tools

In-service requirements

Implement Manufacturing Controls

Life cycle

Project 6 – surface probe development

Repair

Engineering, Operations & Technology | Boeing Research & Technology

Structural Technology

