

Analysis of Fastener Disbond Arrest Mechanism for Laminated Composite Structures

Kuen Y. Lin, *Chi Ho Cheung*, and Phillip Gray Department of Aeronautics and Astronautics University of Washington

October 21, 2010

- Principal Investigator:
 - Dr. Kuen Y. Lin, Aeronautics and Astronautics, UW
- **Research Scientist:** Dr. Andrey Styuart, UW
- PhD Student: Chi Ho "Eric" Cheung, UW
- Undergraduate Research Assistant: Phillip Gray, UW
- FAA Technical Monitors: Lynn Pham, Curtis Davies
- Other FAA Personnel: Larry Ilcewicz, Peter Shyprykevich (Ret.)
- Industry Participants: Gerald Mabson, Marc Pieh, Eric Cregger, Cliff Chen, Lyle Deobald, Alan Miller, Steve Precup (All from Boeing)
- Industry Sponsors: Boeing Ø

Work Accomplished: Phase 1

("Development of Reliability-Based Damage Tolerant Structural Design Methodology")

- Developed the methodology to determine the reliability and maintenance planning of damage tolerant structures.
- Developed a user-friendly software (RELACS) for calculating POF and inspection intervals.
- Developed software interface (VSTM) with Nastran to facilitate stochastic FEA.
- Implemented stochastic FEA to obtain initial/damaged residual strength variance.

Current Research

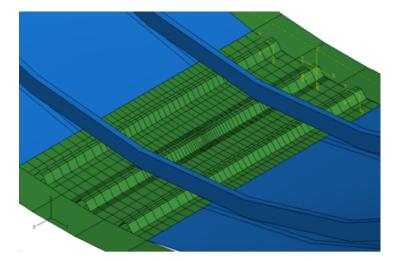
- Develop analytical methods to analyze disbond and delamination arrest mechanisms in bonded structures under mixed mode loading.
- To apply probabilistic methods to assess reliability of bonded structures with fasteners.

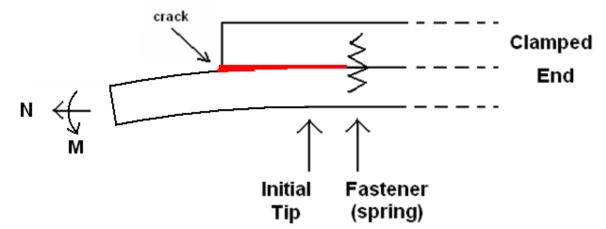
Objectives

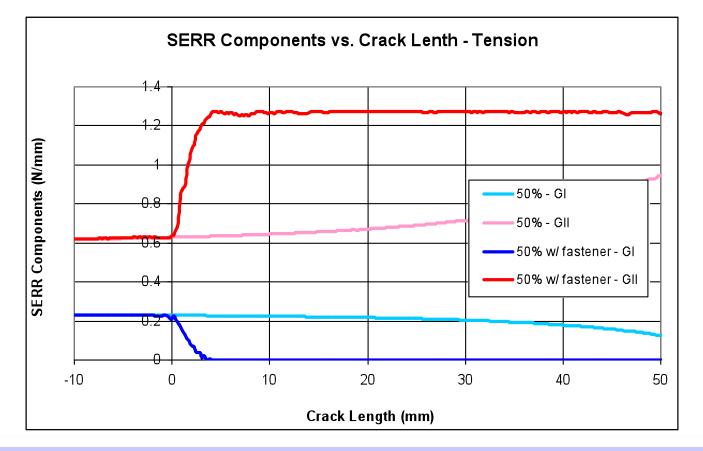
- To understand the effectiveness of delamination/disbond arrest mechanisms
- To develop analysis tools for design and optimization

Tasks

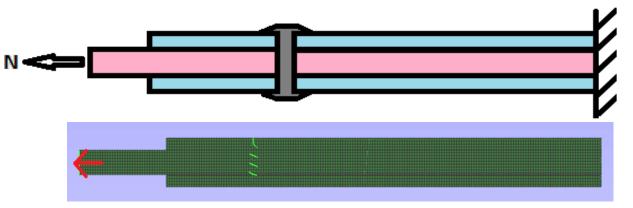

- 1) Establish FE models in ABAQUS
- 2) Develop 1-D (beam) and 2D (plate) analytical capabilities
- 3) Conduct validation experiments
- 3) Implement reliability analysis capability
- 4) Conduct sensitivity studies on fastener effectiveness and stacking sequence effects


JMS Bonded Skin/Stiffener with Fasteners



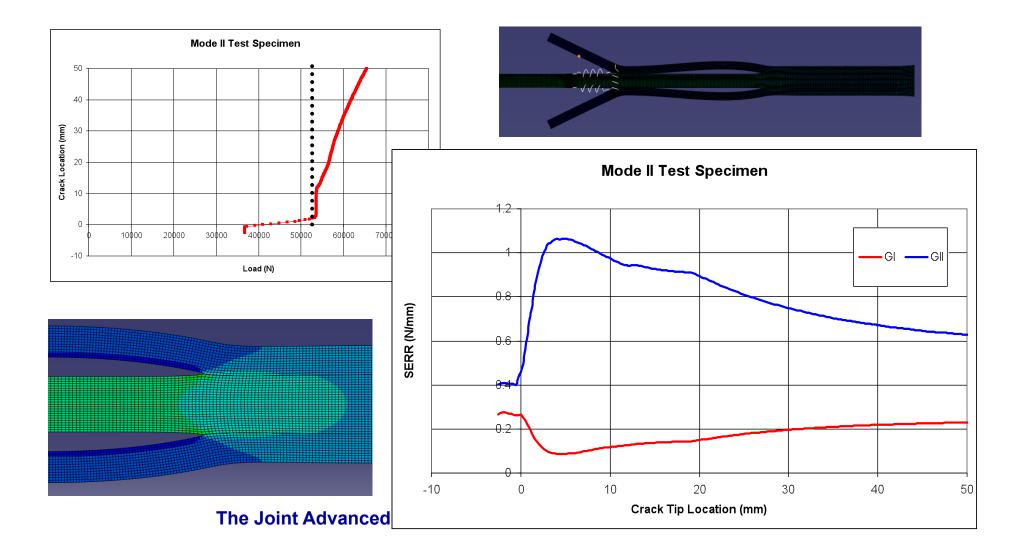


Mode Decomposition: Applied Tension Only

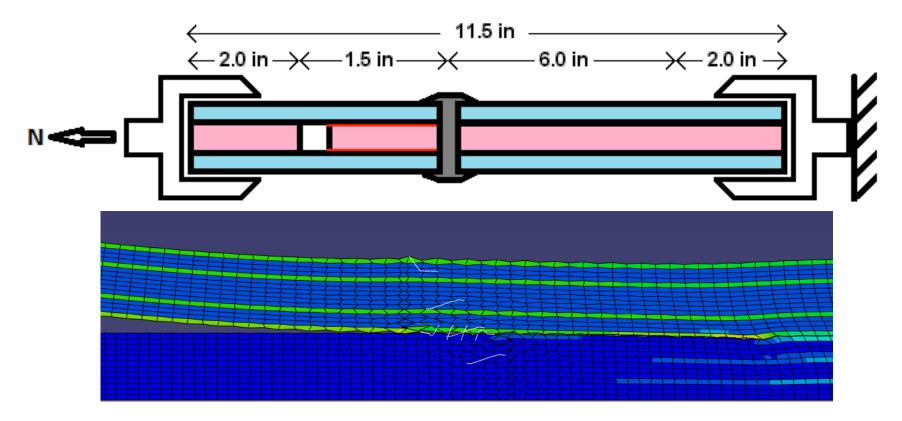


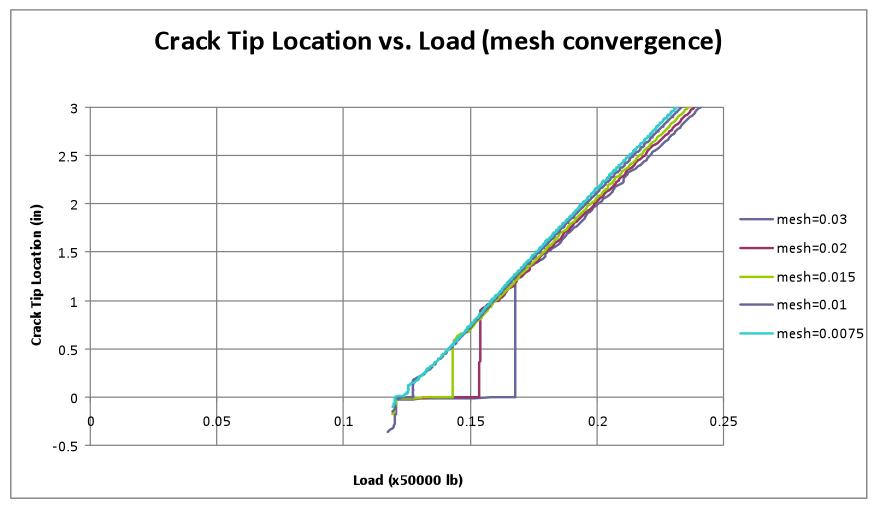
The Joint Advanced Materials and Structures Center of Excellence

- Classical "bending type" specimen not suitable, e.g. SLB, ENF
 - Relatively thick compared to specimen length; specimen dimension coupling
 - Limited space for crack to propagate
- We want "axial type" specimen to test crack arrest behavior
 - Symmetric, 3-beam model, load applied to the center beam

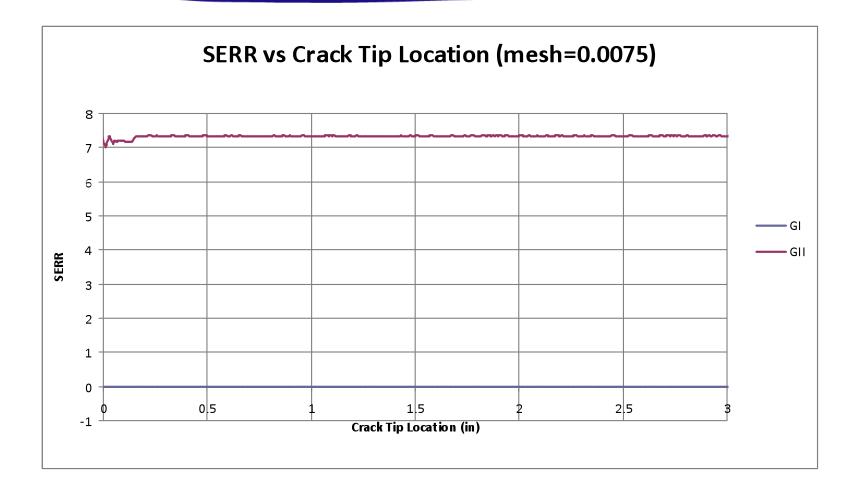


Mode II Test Specimen Preliminary Findings

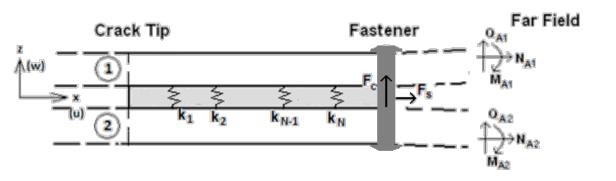




- Reversed Loading elements, i.e. apply tension to the outer two beams
- Closing moment exists at the crack tip



The Joint Advanced Materials and Structures Center of Excellence


Sample Test Matrix

Layup (Top and bottom)	Layup (Center)	Fastener Diameter (in)	Width (in)	Number of Specimens
[(0/45/-45/90) ₂] _S	[(0/45/-45/90) ₃] _S	0.125	0.625	5
[(0/45/-45/90) ₂] _S	[(0/45/-45/90) ₃] _S	0.25	1.250	5
[(0/45/-45/90) ₂] _S	[(0/45/-45/90) ₃] _S	0.375	1.875	5
[(0/45/-45/90) ₃] _S	[(0/45/-45/90) ₃] _S	0.25	1.250	5
[(0/45/-45/90) ₃] _S	[(0/45/-45/90) ₃] _S	0.375	1.875	5

- Specimens to be manufactured by Boeing
- Testing to be conducted at University of Washington

- Uses Rayleigh-Ritz method and the energy principle.
- Two beams, fastener (two springs), and an elastic foundation layer between beams.
- Elastic layer is composed of *N* individual springs where *k* is very large in compression and zero in tension, for contact and separation.
- Solve system for the state of minimum potential energy iteratively.
- SERR mode decomposition by VCCT.

13

$$\delta \Pi = 0$$
; where $\Pi = U_{total} - W_{total}$

Beam Energy Terms

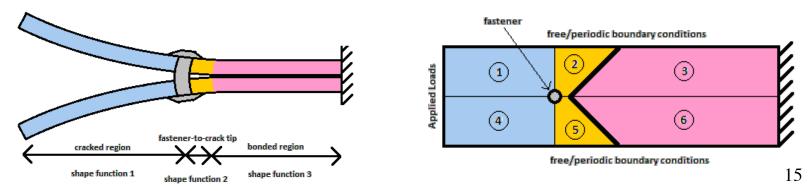
$$U_b = \frac{1}{2} EI \int_0^L \left(\frac{d^2w}{dx^2}\right)^2 dx$$
$$U_s = 1.2 \frac{EI^2}{A} (1+\nu) \int_0^L \left(\frac{d^3w}{dx^3}\right)^2 dx$$
$$U_{ba} = \frac{1}{2} N \int_0^L \left(\frac{dw}{dx}\right)^2 dx$$

Elastic Layer Energy

$$U_{EL} = \sum_{n=1}^{N} \frac{1}{2} k_n (w_2 - w_1)^2 |_{x = L \binom{n}{N}}$$

Fastener/Spring Energy

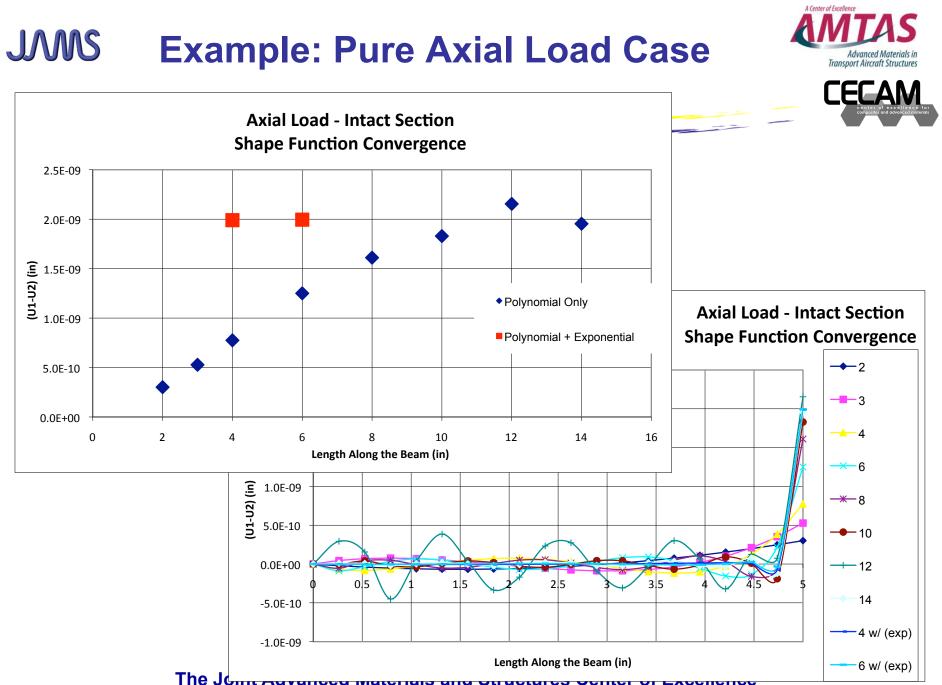
$$U_{kc} = \frac{1}{2} k_c (w_2 - w_1)^2 |_{x=L}$$
$$U_{ks} = \frac{1}{2} k_s (u_2 - u_1)^2 |_{x=L}$$


Work Terms

$$W_Q = Qw|_{x=L}$$

$$W_M = M\left(\frac{dw}{dx}\right)|_{x=L}$$

- Discontinuities require piecewise treatment of the model
- The set of shape functions have to adapt to new geometry after crack growth
- Shape functions must satisfy geometric boundary conditions
- Why is it important?

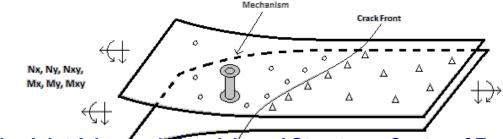


- Conventional vs. Composite shape functions
- The crack tip force can be used in VCCT
- Plots (u1-u2) which gives the shear transfer between two beams

$$u_{1,2} = \sum \left(a_i x^i \right)$$

$$u_{1,2} = \sum \left(a_i x^i + b_j e^{\frac{t}{j^2} (x-L)} \right)$$

$$\longrightarrow N$$


materials and otractares ocnier LACCHENCE

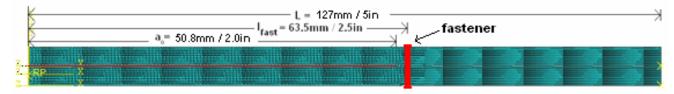
JMS Work in Progress / Future Work

- Develop analytical solutions
- Consider all alternate failure modes
- Model crack propagation around the fastener in 3-D
- Consider multiple fasteners
- Design validation experiments
- Generate design curves
- Identify key variables for design and optimization
- Perform parametric/sensitivity analyses

Benefit to Aviation

- Provide analysis tools for fastener arrest mechanism
- Provide a fail-safe path to the design of integrated composite structures
- Optimization can lead to weight savings while properly addressing safety issue
- Integrating with probabilistic analysis method can properly address design uncertainties

JMS[back up]Laminate Configuration (16 plies)



0-ply	Lay-up	E _x	C (in/lb) (joint compliance)
25.0%	(45/0/-45/90/45/0/-45/90) _s	7.42×10 ⁶	7.73×10 ⁻⁶
37.5%	(45/0/-45/0/45/0/-45/90) _s	9.29×10 ⁶	6.57×10 ⁻⁶
50.0%	(45/0 ₂ /-45/0 ₂ /90 ₂) _s	1.10×10 ⁷	5.85×10 ⁻⁶
62.5%	(45/0 ₃ /-45/0 ₂ /90) _s	1.30×10 ⁷	5.25×10 ⁻⁶

$$C = \left(\frac{t_1 + t_2}{2d}\right)^a \frac{b}{n} \left(\frac{1}{t_1 E_1} + \frac{1}{n t_2 E_2} + \frac{1}{n t_1 E_3} + \frac{1}{2n t_2 E_3}\right) \qquad \qquad k_{clamp} = \frac{AE}{(t_1 + t_2)} = 3.37 \times 10^6$$

$$a = 2/3, \ b = 4.2, \ n = 1$$

$$G_{equivC} = G_{IC} + \left(G_{IIC} - G_{IC}\right) \left(\frac{G_{II}}{G_I + G_{II}}\right)^{\eta}$$

- 16-ply CFRP (t = 0.0075" x 16 = 0.12")
- Lay-ups
 - Percentage of 0-deg: 25% / 37.5% / 50% / 62.5%
- Fastener
 - Ti-Al6-V4 (E = 16.5x10⁶psi)
 - d = 0.25 in
- Fastener Flexibility (H. Huth, 1986)

$$C = \left(\frac{t_1 + t_2}{2d}\right)^a \frac{b}{n} \left(\frac{1}{t_1 E_1} + \frac{1}{n t_2 E_2} + \frac{1}{n t_1 E_3} + \frac{1}{2n t_2 E_3}\right)$$

JMS[back up]Material Properties (AS4/3501-6)

- E₁=127.5GPa
- E₂=11.3GPa
- G₁₂=6.0GPa
- v=0.3
- X_t=2282MPa
- X_c=1440MPa
- Y_t=57MPa
- Y_c=228MPa
- S_{xy}=71MPa
- G_{IC}=0.2627N/mm
- G_{IIC}=1.226N/mm
- η=1.75

- E₁=18.5Msi
- E₂=1.64Msi
- G₁₂=0.871Msi
- v=0.3
- X_t=331ksi
- X_c=208.9ksi
- Y_t=8.3ksi
- Y_c=33.1ksi
- S_{xy}=10.3ksi
- G_{IC} =1.5lb/in
- G_{IIC}=7.0lb/in
- η=1.75