

Optimizing Composite Repair by Tailored Heat Sources

Inverse/Optimal Repair of Composites

ΓΕΓΔΙ

- Objective: To design heat sources that achieve an isothermal state in the repair zone
- Approach: An Inverse Analysis using Finite Elements, Proper Orthogonal Decomposition, Sparse Grids and Bayesian Inference

FAA Sponsored Project Information

- E. Casterline, C. Mays, J. Lombard, Heatcon
- Curtis Davies, David Westfield, FAA
 Technical Monitors
- Heatcon and Boeing

To specify the spatial distribution of heat flux from a heating source (blanket) to produce a specified and constant temperature throughout the cure zone

with a minimum of pre-repair testing

10/26/10

This heat sink had little measurable effect

So we replaced it with a channel with air flowing at different rates

Adding Cooling Air

h _{bottom} (w/m^2 C) Blar

Blan	ket= 2	w/in^2
------	--------	--------

No air flow	6.9	
	8.5	
50 l/m	10.5	
	14.1*	0.8 w/in^2
100 l/m	11.9	
	15.9	1.6 w/in^2

* Common colors denote the results from the same tests

JMS Behavior of Temperatures

10/26/10

JMS Thermograms at early times

10/26/10

JMS Time Histories of Thermograms

No Air Flow

50 l/m, 0.8 w/in^2

100 l/m, 1.6 w/in^2

Conclusions

- B) The basic patterns of the surface temperature as measured by the thermograms shows promise in detecting backside heat flows.
- C) Relating the characteristics of the thermograms to the magnitude of the heat flows is currently being studied—experimentally and through simulation