Energy storage via high-energy density composite flywheels

Brian C. Fabien

fabien@u.washington.edu

Department of Mechanical Engineering

University of Washington

Seattle, WA 98195

Introduction - Motivation - Basic Principle

- Introduction Motivation Basic Principle
- Stacked-ply disk design problem

- Introduction Motivation Basic Principle
- Stacked-ply disk design problem
- Disk construction

- Introduction Motivation Basic Principle
- Stacked-ply disk design problem
- Disk construction
- Testing and evaluation

- Introduction Motivation Basic Principle
- Stacked-ply disk design problem
- Disk construction
- Testing and evaluation
- Conclusion

Lead acid battery: 18 Wh/kg

- Lead acid battery: 18 Wh/kg
- Nickel-cadmium battery: 31 Wh/kg

- Lead acid battery: 18 Wh/kg
- Nickel-cadmium battery: 31 Wh/kg
- Hydrostorage: 300 Wh/m³

- Lead acid battery: 18 Wh/kg
- Nickel-cadmium battery: 31 Wh/kg
- Hydrostorage: 300 Wh/m³
- Composite flywheels: 100 to 1000 Wh/kg

- Lead acid battery: 18 Wh/kg
- Nickel-cadmium battery: 31 Wh/kg
- Hydrostorage: 300 Wh/m³
- Composite flywheels: 100 to 1000 Wh/kg
- Compressed air: 2000 Wh/m³

- Lead acid battery: 18 Wh/kg
- Nickel-cadmium battery: 31 Wh/kg
- Hydrostorage: 300 Wh/m³
- Composite flywheels: 100 to 1000 Wh/kg
- Compressed air: 2000 Wh/m³
- Gasoline: 14000 Wh/kg

- Lead acid battery: 18 Wh/kg
- Nickel-cadmium battery: 31 Wh/kg
- Hydrostorage: 300 Wh/m³
- Composite flywheels: 100 to 1000 Wh/kg
- Compressed air: 2000 Wh/m³
- Gasoline: 14000 Wh/kg
- Hydrogen: 38000 Wh/kg

Flywheel Energy Storage (FES)

- FES usage
 - Electrical load leveling
 - Batteries for electrical vehicles
 - Pulsed power supplies
- FES design challenges
 - Bearings
 - Drive/generator
 - Containment
 - Flywheel

Flywheel Energy Storage - Basic ideas

- A kinetic energy storage device
- Maximum energy density:

$$\alpha = \frac{1}{2} \left(I \omega_f^2 \right) \left(\frac{1}{3600 \rho V} \right)$$
 Wh/kg

I - moment of inertia of the disk (kg-m²), ω_f - failure speed of the disk (rad/s), ρ - density (kg/m³), *V* - volume (m³).

Flywheel Energy Storage - Schematics

Stacked-ply Flywheel

- Alternate layers of radial and tangential plies
- Can fiber angle variation improve performance?
- How can such disks be constructed?

Constitutive relationship

The *k***-th ply stiffness**

$$\begin{pmatrix} \sigma_{rr} \\ \sigma_{\theta\theta} \\ \tau_{r\theta} \end{pmatrix}_{k} = \underbrace{ \begin{pmatrix} \bar{Q}_{rr} & \bar{Q}_{r\theta} & \bar{Q}_{r6} \\ \bar{Q}_{r\theta} & \bar{Q}_{\theta\theta} & \bar{Q}_{\theta6} \\ \bar{Q}_{r6} & \bar{Q}_{\theta6} & \bar{Q}_{66} \end{pmatrix}_{k} \begin{pmatrix} \epsilon_{rr} \\ \epsilon_{\theta\theta} \\ \gamma_{r\theta} \end{pmatrix}_{k} }_{[\bar{\mathbf{Q}}(\phi)]_{k}}$$

Energy storage via high-energy density composite flywheels - p.9/3

Stiffness components

$$\begin{split} \bar{Q}_{rr} &= Q_{11}\cos^4\phi + Q_{22}\sin^4\phi + (2Q_{12} + 4Q_{66})\cos^2\phi\sin^2\phi \\ \bar{Q}_{r\theta} &= Q_{12}(\cos^4\phi + \sin^4\phi) + (Q_{11} + Q_{22} - 4Q_{66})\cos^2\phi\sin^2\phi \\ \bar{Q}_{22} &= Q_{11}\sin^4\phi + Q_{22}\cos^4\phi + (2Q_{12} + 4Q_{66})\cos^2\phi\sin^2\phi \\ \bar{Q}_{66} &= (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})\cos^2\phi\sin^2\phi \\ &\quad + Q_{66}(\cos^4\phi + \sin^4\phi) \\ \bar{Q}_{r6} &= (Q_{11} - Q_{12} - 2Q_{66})\cos^3\phi\sin\phi \\ &\quad - (Q_{22} - Q_{12} - 2Q_{66})\cos\phi\sin^3\phi \\ \bar{Q}_{\theta 6} &= (Q_{11} - Q_{12} - 2Q_{66})\cos\phi\sin^3\phi \\ &\quad - (Q_{22} - Q_{12} - 2Q_{66})\cos\phi\sin^3\phi \\ &\quad - (Q_{22} - Q_{12} - 2Q_{66})\cos\phi\sin^3\phi \\ \end{split}$$

Ply properties

$$Q_{11} = \frac{E_{11}}{1 - \nu_{12}\nu_{21}}$$
$$Q_{22} = \frac{E_{22}}{1 - \nu_{12}\nu_{21}}$$
$$Q_{12} = Q_{21} = \frac{\nu_{21}E_{11}}{1 - \nu_{12}\nu_{21}}$$
$$Q_{66} = G_{12}$$

Laminate constitutive relations

$$\begin{pmatrix} \tilde{\sigma}_{rr} \\ \tilde{\sigma}_{\theta\theta} \\ \tilde{\tau}_{r\theta} \end{pmatrix} = [\mathbf{A}(\phi)] \begin{pmatrix} \epsilon_{rr} \\ \epsilon_{\theta\theta} \\ \gamma_{r\theta} \end{pmatrix}$$

$$[\mathbf{A}(\phi)] = \lambda \underbrace{[\mathbf{\bar{Q}}(90^{\circ})]}_{\text{tang. stiffness}} + (1-\lambda) \underbrace{\left(\frac{1}{2}[\mathbf{\bar{Q}}(\phi)] + \frac{1}{2}[\mathbf{\bar{Q}}(-\phi)]\right)}_{\text{radial stiffness}}$$

$$\lambda = \underbrace{\text{total thickness of tangential reinforcement plies}}_{\text{total thickness of tangential reinforcement plies}}$$

total thickness of laminate

Laminate constitutive relations (cont.)

where $[\mathbf{S}(\phi)] = [\mathbf{A}(\phi)]^{-1}$ is the effective compliance matrix

$$\begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \tau_{12} \end{pmatrix}_{k} = [\mathbf{T}(\phi)]_{k} [\bar{\mathbf{Q}}(\phi)]_{k} [\mathbf{S}(\phi)] \begin{pmatrix} \tilde{\sigma}_{rr} \\ \tilde{\sigma}_{\theta\theta} \\ 0 \end{pmatrix}$$

Coordinate trasformation

• Equilibrium: $\frac{d}{dr}(r\tilde{\sigma}_{rr}) - \tilde{\sigma}_{\theta\theta} + \rho\omega^2 r^2 = 0$

- Equilibrium: $\frac{d}{dr}(r\tilde{\sigma}_{rr}) \tilde{\sigma}_{\theta\theta} + \rho\omega^2 r^2 = 0$
- Compatibility: $r\frac{d\epsilon_{\theta\theta}}{dr} + \epsilon_{\theta\theta} \epsilon_{rr} = 0$

- Equilibrium: $\frac{d}{dr}(r\tilde{\sigma}_{rr}) \tilde{\sigma}_{\theta\theta} + \rho\omega^2 r^2 = 0$
- Compatibility: $r\frac{d\epsilon_{\theta\theta}}{dr} + \epsilon_{\theta\theta} \epsilon_{rr} = 0$
- States:

$$x_1 = \frac{\tilde{\sigma}_{rr}}{\rho \omega^2 r_o^2}, \quad x_2 = \frac{\tilde{\sigma}_{\theta \theta}}{\rho \omega^2 r_o^2}, \quad x_3 = \phi, \quad x_4 = r/r_o = \tau$$

- Equilibrium: $\frac{d}{dr}(r\tilde{\sigma}_{rr}) \tilde{\sigma}_{\theta\theta} + \rho\omega^2 r^2 = 0$
- Compatibility: $r \frac{d\epsilon_{\theta\theta}}{dr} + \epsilon_{\theta\theta} \epsilon_{rr} = 0$
- States:

$$x_1 = \frac{\tilde{\sigma}_{rr}}{\rho \omega^2 r_o^2}, \quad x_2 = \frac{\tilde{\sigma}_{\theta \theta}}{\rho \omega^2 r_o^2}, \quad x_3 = \phi, \quad x_4 = r/r_o = \tau$$

• Control variable: \implies derivative of fiber angle: $u = d\phi/d\tau$

- Equilibrium: $\frac{d}{dr}(r\tilde{\sigma}_{rr}) \tilde{\sigma}_{\theta\theta} + \rho\omega^2 r^2 = 0$
- Compatibility: $r \frac{d\epsilon_{\theta\theta}}{dr} + \epsilon_{\theta\theta} \epsilon_{rr} = 0$
- States:

$$x_1 = \frac{\tilde{\sigma}_{rr}}{\rho \omega^2 r_o^2}, \quad x_2 = \frac{\tilde{\sigma}_{\theta \theta}}{\rho \omega^2 r_o^2}, \quad x_3 = \phi, \quad x_4 = r/r_o = \tau$$

- Control variable: \implies derivative of fiber angle: $u = d\phi/d\tau$
- Nondimensional compliance: $S_{\theta\theta} = E_{11}S_{\theta\theta}$ and $S_{r\theta} = E_{11}S_{r\theta}$.

State equations

$$\dot{x}_{1} = \left(x_{2} - x_{1} - x_{4}^{2}\right) / x_{4},$$

$$\dot{x}_{2} = -\left[x_{1} \left(x_{4} \mathcal{S}_{r\theta}' u - \mathcal{S}_{rr}\right) - \mathcal{S}_{r\theta} x_{4}^{2} + x_{2} \left(x_{4} \mathcal{S}_{\theta\theta}' u + \mathcal{S}_{\theta\theta}\right)\right] / \left[x_{4} \mathcal{S}_{\theta\theta}\right],$$

$$\dot{x}_{3} = u,$$

$$\dot{x}_{4} = 1.$$

where $\dot{x}_i = dx_i/d\tau$, i = 1, 2, 3, 4, $S'_{\theta\theta} = dS_{\theta\theta}/d\phi$, and $S'_{r\theta} = dS_{r\theta}/d\phi$.

Flywheel Performance

Energy density:

$$\alpha = \frac{\omega_f^2}{14400} \left(\frac{r_o^4 - r_i^4}{r_o^2 - r_i^2} \right) \text{ [Wh/kg]}$$

Flywheel Performance

Energy density:

$$\alpha = \frac{\omega_f^2}{14400} \left(\frac{r_o^4 - r_i^4}{r_o^2 - r_i^2} \right) \text{ [Wh/kg]}$$

Design problem: Find the radial-ply fiber orientation that will maximize ω_f .

Failure theories: When does the disk fail?

- Maximum stress failure criterion
- Maximum strain failure criterion
- Tsai-Wu failure criterion

Optimization results

Compare 4 designs:

- **•** Benchmark design: $\phi(\tau) = 0$.
- J_{σ} , maximum stress failure criterion.
- J_{ϵ} , maximum strain failure criterion.
- $J_{\rm TW}$, Tsai-Wu failure criterion.

Fiber orientation

WASHINGTON

Energy storage via high-energy density composite flywheels - p.20/3

Effective radial stress

WASHINGTON

Effective tangential stress

WASHINGTON

Radial ply stress σ_{11}

Energy storage via high-energy density composite flywheels - p.27/34

Tangential ply stress σ_{11}

Energy storage via high-energy density composite flywheels - p.28/34

Energy density

Disk	Maximum	Maximum	Tsai-Wu
design	stress	strain	
Benchmark	150	150	142
J_{σ}	168	168	106
J_ϵ	161	161	157
J_{TW}	166	166	156

Flywheel construction

Fiber layout

Benchmark design

Fiber layout

Optimized design

Tangential strain

Fiber angle optimization can improve energy density

- Fiber angle optimization can improve energy density
- Failure criteria is significant

- Fiber angle optimization can improve energy density
- Failure criteria is significant
- Optimized radial plies can be constructed

- Fiber angle optimization can improve energy density
- Failure criteria is significant
- Optimized radial plies can be constructed
- Behavior as predicted by classical lamination theory

