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What is Crashworthiness?

Reasons for accident fatality:
Contusion against objects.
Excessive decelerations.
Fire and smoke.

Conditions for survivability:
1. maintaining sufficient occupant space
2. providing adequate occupant restraint
3. employing energy-absorbing devices
4. and allowing for a safe post-crash egress from the craft.
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Automotive foundations

Front Crumple zone.

Tubular mentality.
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Measuring Energy Absorption:

Specific Energy Absorption (SEA) is the Absorbed Energy per 
unit mass of crushed structure, 

Absorbed Energy is the total area under the Load-
Displacement diagram
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SEA:
In general composites have a greater SEA potential 
but need to be carefully studied and understood.
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Metal failure modes:
Metal structures collapse by progressive yielding/ hinging.

Plastic folding
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Composite failure modes:

Brittle compressive and shear fracture of resin and fibers

Bending and friction of lamina bundles/ fronds

Interlaminar crack growth/ delamination propagation

Fragmentation/ splaying
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Rotorcraft subfloor



5/17 and 5/19/2006

AA332 - AIRCRAFT STRUCTURES II

9
9

CMH-17 Crashworthiness Working Group

Numerical standardization
Current FE modeling strategies are not predictive
Round Robin initiated involving major FE explicit dynamic 
codes to characterize material models and modeling 
strategies
Goal is to develop guidelines for “plug-and-play” capabilities

Experimental Standardization
No existing test standard to determine SEA 
No way to screen material systems/ forms/ lay-ups
Material suppliers, OEM’s and regulators need to speak one 
language
Goal is to develop test standard and design guidelines
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Numerical Standardization:
Non-linear, dynamic simulation requires explicit FEA codes
Common commercial codes used in this field are:

LS-DYNA (LSTC)
ABAQUS Explicit (SIMULIA)
[PAMCRASH (ESI)]
[[RADIOSS (ALTAIR)]]

Each code is unique for:
Material models

Failure criteria implementation
Strength and stiffness degradation strategies

Other code parameters: contact definition damping, time 
steps, etc…
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Numerical Standardization:
LS-DYNA

Used as benchmark in the field for years
Pre-existing material models
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Numerical Standardization:
Composite constitutive models are continuum mechanics 
models and treat composites as orthotropic linear elastic 
materials within a failure surface, which depends on the 
failure criterion adopted.
Beyond failure, elastic properties are degraded according to 
degradation laws: 

progressive failure models (PFM)
continuum damage mechanics (CDM) models.

Courtesy X. Xiao
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Numerical Standardization:
PFM use a ply discount method to degrade the elastic 
properties of the ply from its undamaged state to a fully 
damaged state 
Elastic properties are dependent on field variables. 
After a failure index has exceeded 1.0, the associated user-
defined field variable is made to transit from 0 (undamaged) 
to 1 (fully damaged) instantaneously.  
LSDYNA MAT 22, 54, 55 and 59
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Numerical Standardization:
CDM describe the collective influence of damage through the 
use of internal damage variables, which assume continuous 
values between [0, 1] 
LSDYNA MAT 58, 161
Damage variables cannot be measured directly: need to 
relate microstructure deterioration to macroscopic response
CDM can be microscopic, mesoscopic and macroscopic

Micro and mesoscopic models 
relate specific damage mechanisms 
to global stress-strain responses.
Macroscopic or phenomenological 
models treat various damage 
mechanisms in a smeared 
fashion.
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Numerical Standardization:
Progressive Failure Models

Courtesy X. Xiao
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Numerical Standardization:
Key ingredients for a good simulation are:

Material input properties
Other code parameters

In both cases there are several factors that require systematic
calibration.
How do various material models compare?
Are there more suitable ones for a specific problem?
What are things to watch out for?

The methodology used for crashworthiness is identical to the 
one used for other dynamic events, such as FOD and ballistic 
penetration, bird and hail strike modeling, blast resistance, etc.
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Numerical Standardization:
Round robin to evaluate the effectiveness and robustness of 
equivalent numerical models using a common, predefined 
target structure. 
Common material: carbon/epoxy TORAYCA fabric certified 
during the AGATE program (P.O.C. Leslie Cooke). Generate 
input material properties required.
Common geometry: corrugated plate specimen.
Common laminate lay-up: [(0/90)]3s – 12 plies 
Common crush initiator, test velocity, surface friction
Deliverable: For every submission 

Compile simulation datasheet
Exhibit force-deflection curve and  SEA curve
Exhibit animation/ sequential figures of failure morphology
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Numerical Standardization:
Simulation input 
datasheet
Number of parameters!!
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Experimental Standardization:
Self-stabilizing specimens

Tubular (several dozens)
Semicircular (DLR)

Specimens requiring special fixtures
Flat plate (NASA/ARL, Engenuity)
Flat frond (DoE, ACC, Ford)

Tubular specimens are costly and complex to manufacture, 
plus closed section characteristic is added complexity.
Flat specimen is appealing because simple and cheap, but 
effect of fixture is unknown and difficult to characterize and 
model.

Need self-supporting, simple, repeatable specimen
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Experimental Standardization:
NASA/ ARL fixture
Lack of unsupported area where the debris can move freely.
Knife-edge supports prevent “outward brooming” of plies.
Trigger shape sensitivity issues
Knife contact/ indentation variability
Results do not compare well with tubular specimens
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Experimental Standardization:
Engenuity Ltd. fixture
Friction issue partially resolved (Delrin sliders)
Trigger issue partially resolved (jagged vs chamfer)
Extra parameter: spacer height (height of unsupported gap 
between support and base) --- affects measured SEA
Thorough calibration necessary for every material system 
and lay-up – measurement is not robust.
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Experimental Standardization:
DLR specimen
Nearly self-supporting -- requires bonding to a purposedly
machined aluminum base
Easy to manufacture
Used to calibrate PAMCRASH models for Airbus
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Experimental Standardization:
Proposed specimen
Truly self-stabilizing: no fixture necessary
No autoclave or mandrel necessary
Less complexity, cost and uncertainty than tubular 
specimen
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Corrugated Specimen:
Specimen after testing, 
Load, SEA, Total Energy vs. Stroke

TOP BOTTOM
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Experimental Standardization:
Need to preform systematic comparison of:

Flat plate specimens using modified NASA/ ARL/ 
Engenuity fixture
Corrugated web specimens
C-channel sections (indicative of floor stanchions)
Square tubes
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Conclusions:
This project will aim at characterizing analytical and 
experimental aspects of composites crash behavior
Analytically, mainstream FEM codes will be tested 
systematically to compare modeling strategies and derive 
best practices for simulation
Experimentally, existing test methods will be compared to 
identify robustness and repeatability characteristics and 
develop test standards and design guidelines
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