

Paolo Feraboli

Aeronautics and Astronautics University of Washington Seattle, WA

AMTAS Fall Meeting November 2008

Motivation

 New HexMC material form is behaving very differently from continuous fiber tape composites

Benefits to Aviation

- Streamline certification process:
 - possibility of TSO
 - increase confidence in analysis methods and move away from current certification-by-test strategy

Objective

 Identify physical behaviors, develop analysis methods, generate design guidelines, and summarize in certification strategy

Principal Investigators

Dr. Paolo Feraboli (AA)

Students supported

• Tyler Cleveland (MSAA/ PhD) Francesca Paltera (MSME/PhD)

FAA Personnel Involved

Mark Freisthler, Dr. Larry Ilcewicz, and Curt Davies

Industry Participation

- Dr. Bill Avery (Boeing Structures Technology)
- Lyle Deobald, Bill Bielawski (Boeing Methods and Allowables)
- Dr. Patrick Stickler (Boeing Technology)
- Dave Barr, Bruno Boursier (Hexcel Co.)
- John Halpin, Hank Offermann (consultants)

Dr. Mark Tuttle (ME)

Boeing 787 out-of-autoclave components

- CFRP-intensive Boeing 787 Dreamliner: weight, rate and cost all keys to success
- Circumferential frames Bulk resin infusion
- Aft pressure bulkhead and landing gear brace Liquid infusion
- Moveable trailing edge, inboard flap RTM
- Window frames HexMC

M

787 HexMC window frames

- Discontinuous carbon/ epoxy prepreg tape
 AS4/ 8552 chopped and rolled into sheets
- 50 mm long x 8 mm wide chips
- Compression molded

HexMC chip characteristic

- Prepreg chips 2.0 in. x 0.33 in.
- High grade fibers/ resins
- Unidirectional tape
- Per-ply thickness 0.065 in.
- Compression molding process
- RC ~40% by weight

HexMC laminate characteristic

- Quasi-isotropic properties
- Per-ply thickness 0.055 in.
- RC ~32-34% by weight

Low-flow molding vs. High-flow molding

Yields highest performance - only one of interest in this activity

M

Desirable behaviors

- Material is quasi-isotropic in the plane, and strength variation is ~9%
- Material retains high strength in presence of holes, notches
- Material is highly resistant to moisture and temperature
- Material has same modulus as quasi-isotropic continuous tape
 - Material is ideal for stiffness driven designs, as well as for applications where the loading or geometry is complex

Undesirable behaviors

- Best suitable for non-minimum gage parts
- Nearly 50% of specimens with 1/4 in. diameter holes fail away from the hole
- Unusually high variation in the modulus measurements
 - All traditional analysis methods (semi-empirical or FEA) and related allowables are no longer valid.

Contact: feraboli@aa.washington.edu

9/73

 Prepreg can be slit and chopped in the lab to make HexMC-like systems (similarly to Halpin+ Kardos research from 1970's)

areas (air pockets) rather than diffused porosity

Voids are present as concentrated unwetted

Partial focus on HexMC

Background research

 PI Paolo Feraboli and Boeing POC Patrick Stcikler

Contributions from Eleof Peitso (MSAA June)

 3-year (Feb 2006-Dec 2008) Boeing 787 Technology Program

2008), Dr. John Halpin, Dr. Al Miller

Certification of Discontinuous Composite Material Forms for Aircraft Structures – YEAR I

Linear stress-10000 -UNT strain curve 8000 247 Extensive fiber 6000 Load [lb] breakage 4000 observed 2000 1801.0 п 930.2 0 0.02 0.04 0.06 0.08 0.1 Displacement [in] 40000 35000 30000 25000 psi Stress 20000 15000 10000 y = 5,0322x - 88.081 $R^2 = 0.9999$ 5000 Π 1000 2000 3000 4000 5000 6000 7000 8000 0 Micro-Strain

Contact: feraboli@aa.washington.edu

Certification of Discontinuous Composite Material Forms for Aircraft Structures – YEAR I

Tension failure

M

Open-hole tension net-section failure

- Open-hole failure modes identical to unnotched
- 3/8 in. diameter hole

M

Open-hole tension gross-section failure

- Same 3/8 in diameter hole
- Similar observation by Kardos and Halpin in 1970 report for Navy

Gross-section strength

- Variation of strength with hole diameter
- For constant W, there is a given D for which failure transitions to pure net section
- Strength decrease is linear and mild, unlike continuous laminates

Open-hole strength vs. D/W ratio

- This material form appears to be "notch-insensitive"
- 1:1 line shifted to the right: built-in stress concentration (inherent material K_t) due heterogeneous nature

M

Ultrasonic inspection

- C-scans reveal presence of areas of signal attenuation
- Large "hot-spots" can be due to large entrapped air (macro-voids)

M

Microsections at hot-spot locations

Resin-rich areas or chip swirls occur at the location of the hot spots

UNT Incremental loading and ultrasonic survey

- Specimens were loaded incrementally
- Scanning occurred after each load step
- The hot spots grow as loading increases
- Each failure occurred in a location with hot spots, however the largest hot spot did not always precipitate failure

UNT Incremental loading and ultrasonic survey

Partial Loading:

- A specimen was loaded to 8000lbs and C-Scanned before and after
- Hot spots were observed to grow on the scans
- Microscopy revealed cracking in hot spot regions

OHT Incremental loading and ultrasonic survey

- Once again hot spot growth is noted
- Damage around hole not visible on C-scan
- Open hole specimens failed away from the hole
- Damage leading to failure was visible in C-scan

OHT Incremental loading and ultrasonic survey

SUMMARY

- Hot spots are composed of resin rich areas and voids
- Hot spots indicate some weak areas (8/14 tensile specimens failed at hot spots)
- Incremental loading shows that hot spots can act as weak areas which can initiate damage growth
- However, hot spots do not account for all large stress concentrations

Contact: feraboli@aa.washington.edu

Contact: feraboli@aa.washington.edu

Contact: feraboli@aa.washington.edu

Certification of Discontinuous Composite Material Forms for Aircraft Structures – YEAR I

Digital image correlation (DIC)

- Black speckles are applied to a white background on one side of a specimen
- Images are taken during testing by a pair of digital cameras
- Post processing allows to measure full field strain

Modulus measurement

- 3D digital image correlation system utilized to monitor surface displacements
- Full-field strain measurement yields great insight in variation as well as average

Modulus measurement 7.97 7.17 5.21 4.97 5.69 7.52 5.02 6.25 5.64 4.23 5.63 4.38 6.39 5.54 6.43 5.66 4.64 3.02

Contact: feraboli@aa.washington.edu

Benchmark DIC Part A

 Typical open hole strain field distributions are for a carbon fiber/ epoxy multidirectional tape (unnotched and notched)

Benchmark DIC Part B

 Typical open hole strain field distributions are for a glass fiber/ epoxy discontinuous RTM mat (unnotched and notched)

SUMMARY

- Modulus varies within the specimen (CoV 14%)
- Through-thickness non-homogeneity of material root of this behavior, not surface effect alone
- Strain gages or extensometers cannot be used to measure modulus
- Full-field modulus measurements are within 4%
- DIC shows that compliant (low-modulus) areas tend to correspond to hot-spots
- Stress distribution around hole is unlike traditional stress concentration

M

Year I Project deliverables

- Study feasibility of a TSO with FAA/Industry. Verify how SCD can be turned into TSO.
- Identify key M&P characteristics for part quality control
- Evaluate most suitable NDI methods and acceptance criteria
- Identify part for evaluation and demonstration
- Identify key structural properties for substantiation, and associated analysis methods for the specific part
- Identify the analysis approach and supporting test data needed to meet structural requirements (incl. reliability)
- Define test methods that can be standardized
- Investigate the possibility for using HexMC as stock for machining parts