Lightning strike damage to composite structures

PI: Paolo Feraboli

Aeronautics & Astronautics University of Washington

Boeing focal: Stan Alton

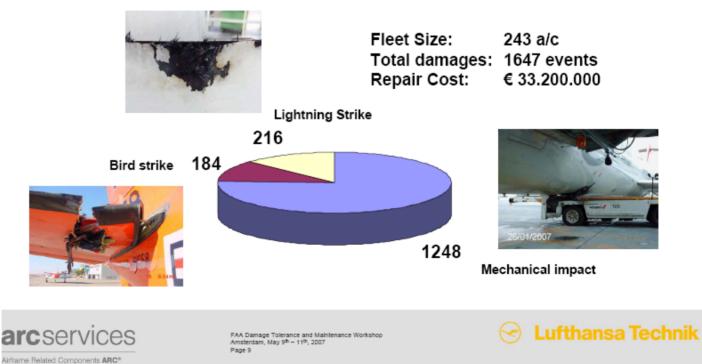
Boeing Commercial Airplanes 787 Technology Integration

Transport Aircraft Structures

Presented at the AMTAS Spring Meeting March 20th, 2008

Outline

- Importance of Lightning Strike research
- Current Lightning Strike facilities in the US
- Damage tolerance requirements
- Proposed research
- Status of research at UW
- Acknowledgments



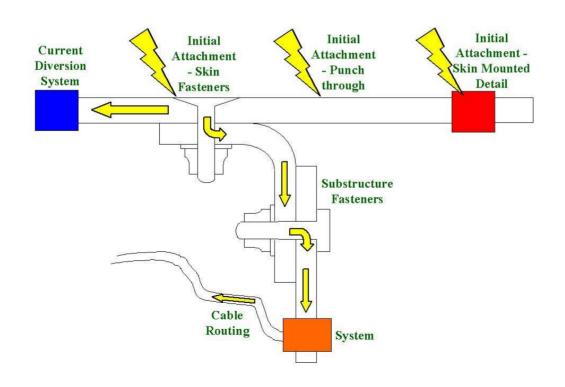
Importance of Lightning Strike research

- Carlos Blohm (Lufthansa Technik)
 - Presented at the FAA/ Boeing/ Airbus/ CACRC joint damage tolerance and maintenance meeting

Damages on composite components

Total damages - Total fleet - Year 2006

Importance of Lightning Strike research


- Composite academic community has not addressed the issue
 - Non-existent literature in scholarly publications
- Extensive research in 1970's and 1980's
 - NASA, FAA and SANDIA
- Extensive research in proprietary domain
 - Boeing has active labs but highly sensitive nature of topic
- AGATE delivered handbook in 2002
 - LTI performed contract research
 - Focused mostly on thin-gage sandwich
 - Large focus on glass fiber skins

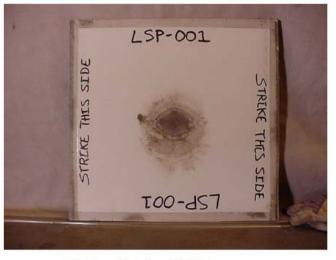
Current Lightning Strike facilities in the US

- Full-size facilities
 - LTI Pittsfield, MA
 - DNB Fullerton, CA
 - Boeing Commercial Seattle, WA
 - Shaw Aero Devices** Naples, FL
 - Goodrich** Chula Vista, CA
 - Red Stone/ Marshall** Huntsville, AL
- Wichita State Univ. (NIAR)
 - Currently only indirect effects
 - Building facility for direct effects testing online late 2008
- Caltech
 - Table-top generator 20kAmps for ignition studies

A systems approach

- Indirect effects
 - EMI shielding
- Direct effects
 - Structural damage
 - Sparking in fuel tank
- Materials, fasteners, sealants, etc. all contribute

Spirit Aero (Wichita)


1/8 Korex core, S-2 glass skin

With Al mesh

Before Zone 1A strike

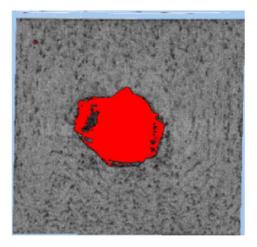
Without Al mesh

After Zone 1A strike - LSP-001

Spirit Aero (Wichita)

1/8 Korex core, S-2 glass skin

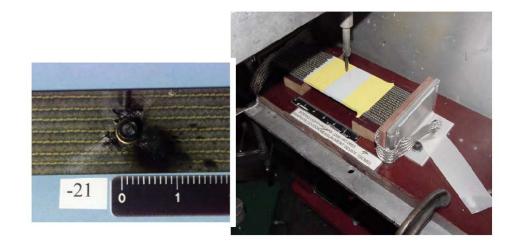
With Al mesh: 3-4 in. damage size, limited to outside mesh ply and paint



Without Al mesh: 9 in. damage size, and punctured both skins

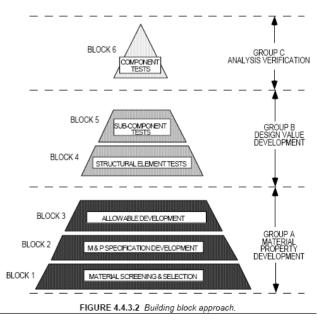
1-2 inch damage, mesh only -validated via TTU (NDI)

Damage area 12 inches, plus thru hole – Validated by TTU

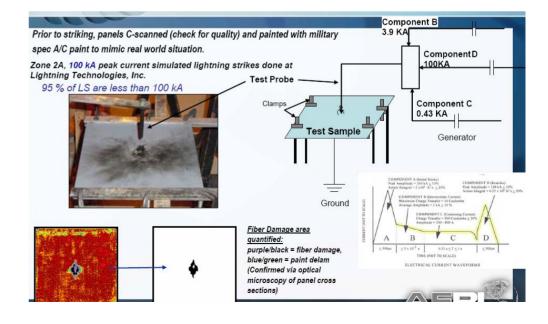


Proposed research

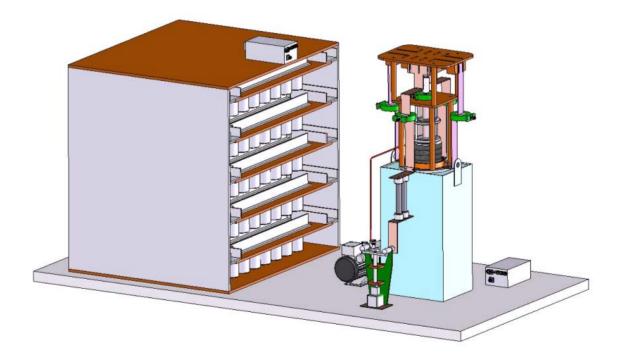
- Current LS research almost exclusive domain of EE engineers
- Focus on:
 - Indirect effects
 - Sparking and fuel ignition
 - Systems/ certification of assemblies and components
 - Structures-focused work has been more superficial


Proposed research

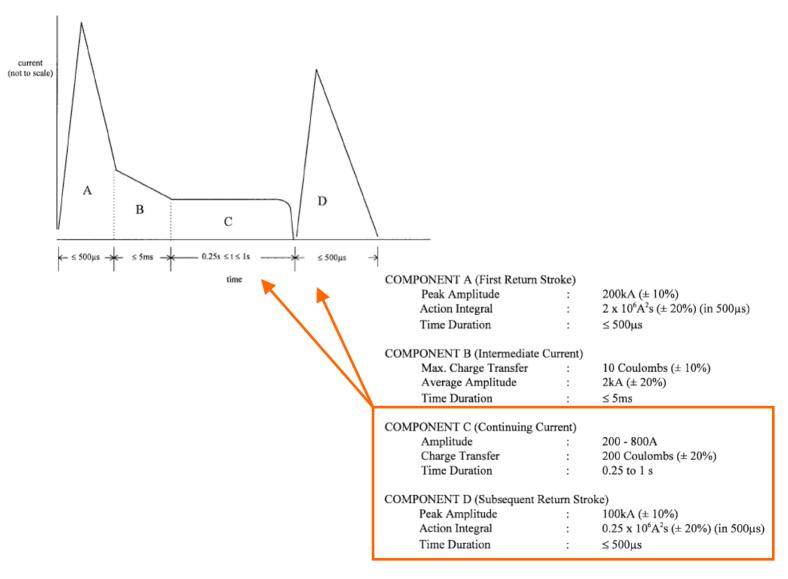
- PI proposes to focus on structural aspects ONLY
 - Laminate carbon fiber laminates
 - Damage resistance (traditional and novel protection systems)
 - Damage tolerance (OHT/ OHC, and other residual strength)
 - Joint detail (effect of fastener preload, effect of fit, etc.)
 - Moisture and temperature effects
 - Different material forms (high vs. standard modulus fibers, toughening interlayer, cure temperature, stacking sequence issues)
 - Repair issues


Proposed research

- Medium size 100 kAmps, 40 kV generator that can test small test articles (up to 12 in x 12 in)
- Building block: certify by analysis supported by test evidence
 - Improve the foundations of the pyramid (basic level) in order to facilitate transition to different material forms
 - Standardize analysis tools to streamline certification process


Inter-agency collaboration

- Air Force:
 - Les Lee of AFOSR and Tia Benson-Tolle of AFRL/WPAFB are currently involved in lightning activities
 - They use LTI test house facilities
 - Emphasis in multifunctional materials and structures, and nano-composite additives for improved conductivity
- Recent CMH-17 activities suggest expansion of participation of AFRL to safety and certification activities


Status of research at UW

- LS generator being built
- Boeing EME lab has provided guidance on lay-out and safety of circuit

Status of research at UW

- Waveform D demonstrated
- Waveform C will be online by April 2008

Acknowledgments

- The Boeing Co.
 - Dale Winter, Diane Heidlebaugh, Rob Steinle, and Art Day
 - Patrick Stickler, Al Miller
- UW principal researcher
 - Mark Miller, MS student
- UW support group
 - Dave Medendorp, Sr. student
 - Andrew Southworth, Sr. student
 - Robert Gordon, engineer
 - Art Blair, engineer

