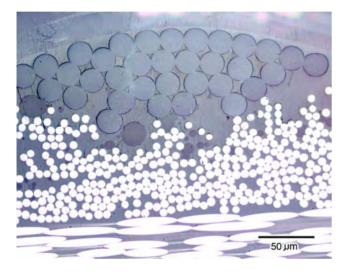
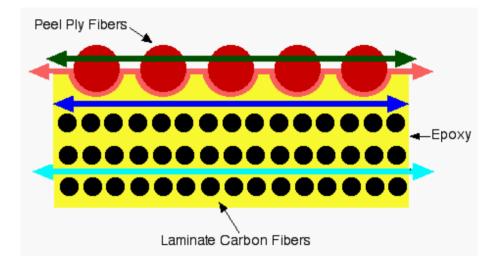


Improving Adhesive Bonding of Composites Through Surface Characterization

(of Peel Ply Prepared Surfaces)

Brian D. Flinn Department of Materials Science and Engineering



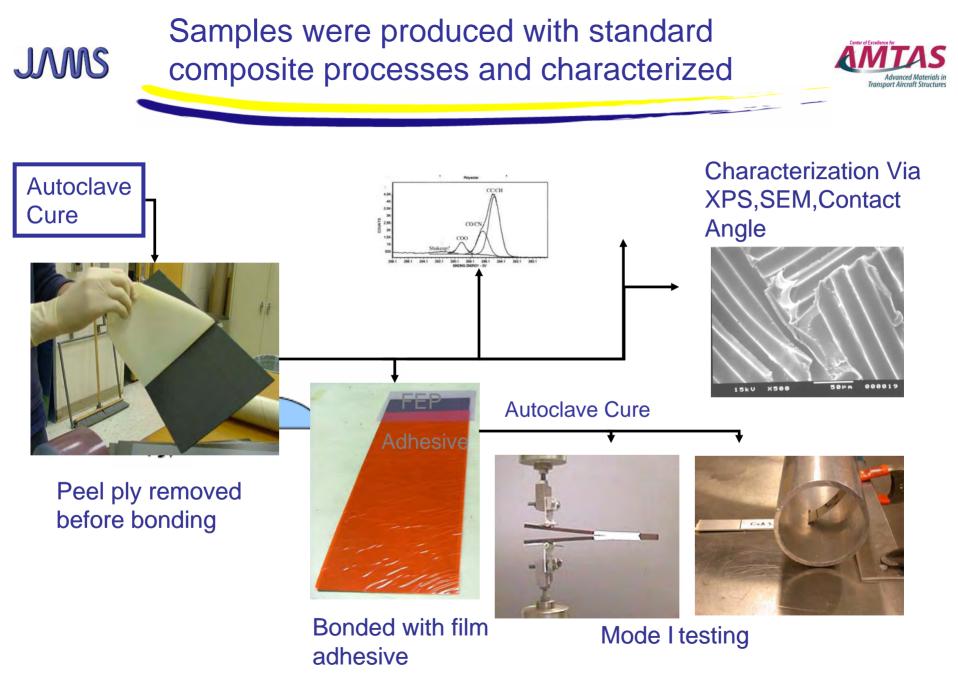


- Motivation and Key Issues
 - Peel ply surface preparation is being used for bonding primary structure
 - Good bonds are produced but questions remain:
 - What are appropriate techniques to inspect surfaces?
 - What are key factors for making a good/poor bond?
 - How to predict material and surface preparation compatibility?
- Objective
 - Further understand the effect of peel ply surface preparation on the durability of primary structural composite bonds through surface analysis coupled with mechanical testing and fractography

Fracture Possibilities Upon Peel Ply Removal

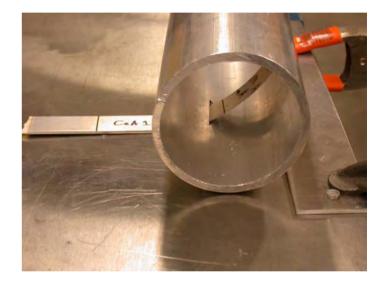
Fracture of the epoxy between peel ply and carbon fibers

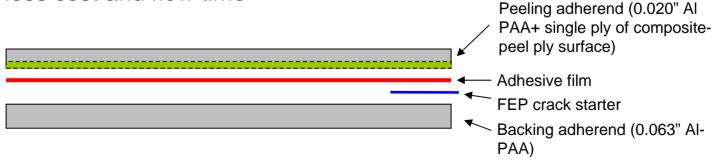
• Fresh, chemically active, epoxy surface is created

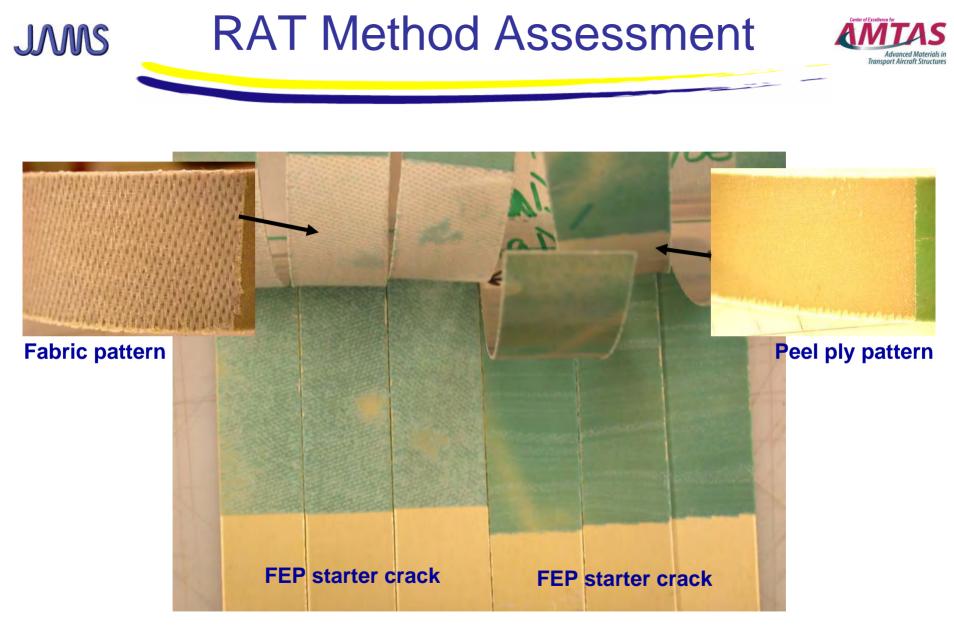


Interfacial fracture between the peel ply fabric fibers and the epoxy matrix

Peel ply fiber fracture Interlaminar failure


The Rapid Adhesion Test (RAT) Method




- A quick, low cost test which assesses the adhesion between metal-composite bonds.
- A modification of metal-to-metal peel test developed by Boeing.
- The backing adherend clamped to while the peeling adherend is removed
- -Failure mode representative of bond
 - Adhesion Failure-Poor Bond

J

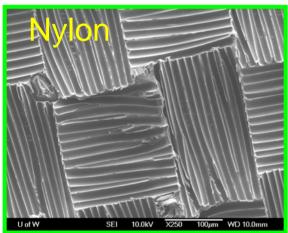
- Cohesive Failure-Strong Bond
- Failure modes correlate with DCB test with ~90% less cost and flow time

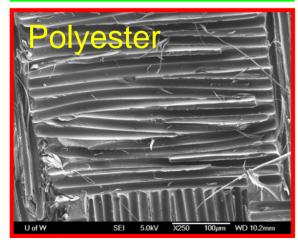
Cohesive failure (left) vs. Adhesion failure (right)

JMS Peel Ply Material-250F Cure GFRP

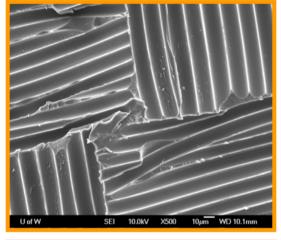
SUMMARY Nylon - Strong Polyester - Weak

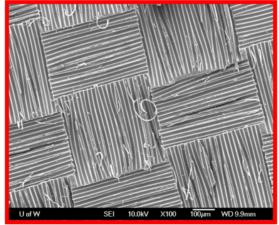
RAT results	6					
updated:	3/24/2006		key:		strong bond	
spec:	BMS 8-79				mixed strong / very strong bonds	
					mixed results	
					weak bond	
Prepreg:	HexPly F155				other	
	adhesive:					
peel ply:	3M AF500	3M AF163-2	Cytec FM94	Henkel EA 9696	Cytec FMx 209	Henkel EA 9628
60001						
(polyester)						
51789						
(nylon)						
Prepreg:	Yokohama	G7781				
	adhesive:					
peel ply:	3M AF500	3M AF163-2	Cytec FM94	Henkel EA 9696	Cytec FMx 209	Henkel EA 9628
60001						
(polyester)						
51789						
(nylon)						
Prepreg:	Cytec MXB	7701				
	adhesive:					
peel ply:	3M AF500	3M AF163-2	Cytec FM94	Henkel EA 9696	Cytec FMx 209	Henkel EA 9628
60001					ĺ.	
(polyester)						
51789						
(nylon)						



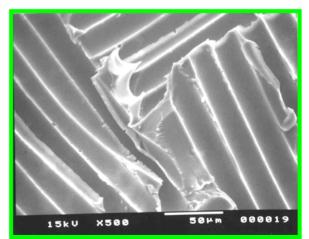

	PEEL PLY USED FOR SURFACE TREATMENT						
Substrate Adhesive	PF60001 Polyester	PF51789 Nylon	Fiberglass-Epoxy	EA9895 PE-Epoxy	Nylon-Epoxy		
Cytec 970 MB1515-3	MIXED	ADHESION	COHESIVE	COHESIVE	ADHESION		
Cytec 970 AF555	MIXED	MIXED	COHESIVE	COHESIVE	COHESIVE		
Toray 3631 MB1515-3	ADHESION	ADHESION	NA	COHESIVE	ADHESION		
Toray 3631 AF555	ADHESION	ADHESION	NA	COHESIVE	ADHESION		
Toray 3900 MB1515-3	COHESIVE	ADHESION	NA	NA	NA		
Toray 3900 AF555	COHESIVE	COHESIVE	NA	NA	NA		

Meel Ply Surface Prep. - SEM Results

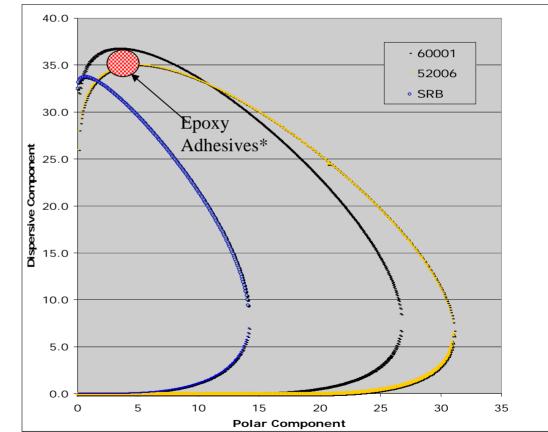

Composite surface after removal of:


260 F cure GFRP




Cytec 970 (360F)

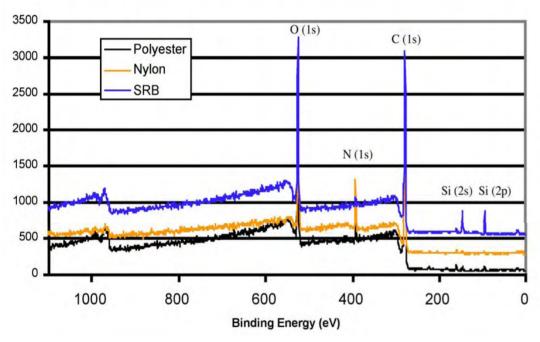
Toray 3900 (360 F)


Wettability envelopes showed the difference in the prepared surfaces.

 Fluids inside the envelope will wet spontaneously

JMS

- Critical condition for bonding?
- Wettability envelopes a potential method to determine suitability of a surface for bonding
- Epoxy adhesives* on boundary for nylon prepared surfaces



* Literature values for aerospace epoxies

- Curves generated using WET program (M. Tuttle)

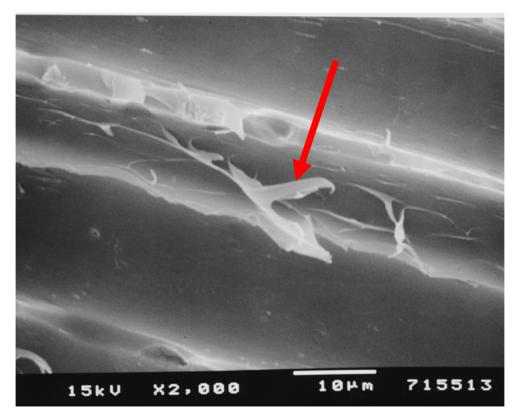
Laminate surfaces before bonding, after peel ply removal

Laminate Surface Composition

Peel Ply	%C	%O	%N	%Si
Nylon	77.5	12.6	9.8	Tr.
Polyester	75.5	21.6	1.9	Tr.
SRB	68	24.2	0.9	6.9

Si explains SRB low bond quality....Siloxane coating transfers
Amount of N on nylon peel ply prepared sample surprising

- Bonding Depends on
 - Prepreg system (Resin and Fiber(?))
 - Peel Ply Material and Source
 - Adhesive
- Characterization Techniques (XPS, SEM and Surface Energy) provide useful information to help understand bonding requirements


A Look Forward

- Benefit to Aviation
 - Better understanding of peel ply surface prep.
 - Guide development of QA methods for surface prep.
 - Greater confidence in adhesive bonds
- Future needs
 - Contact angle (wetting) vs. bond quality
 - Does fiber type (glass, pitch, PAN) effect bonding?
 - Peel ply-resin interactions
 - Applicability to other composite and adhesive systems
 - Model to guide bonding based on characterization, surface prep. and material properties

Laminate surface after removal of nylon peel ply

Nylon from peel ply on surface before bonding?

Bond Quality Depends on:

- Peel Ply Material and Adhesive
 - Polyester peel ply: high toughness bonds, cohesive failure both adhesives
 - Nylon: low toughness, adhesion failure
 - One adhesive bonded well to all surfaces
- H₂0 Contact angle did not correlate well with G_{IC}
- Wettability envelopes more accurate
- XPS can provide important chemical information

- 2 Peel Plies: Polyester 60001 and Nylon 52006
- 3 prepregs-260 °F cure
 - HexPly® F155
 - Yokohama G7781
 - Cytec MXB7701
- 6 adhesives-260 °F cure
 - 3M AF500; 3M AF163-2;
 - Henkel EA 9696; Henkel EA 9628
 - Cytec FM94; Cytec FMx 209
- Bond quality assessed by failure mode
 - Adhesion (poor) vs. Cohesive (good)

The Joint Advanced Materials and Structures Center of Excellence

Bond Quality Depends on:

- Peel Ply Material and Adhesive
 - Nylon : high toughness bonds, cohesive failure all adhesives
 - Polyester peel ply: low toughness, adhesion failure
 - One adhesive bonded well to all surfaces
- Opposite Trend than 350 F system
 - Nylon bad, Polyester good