

Improving Adhesive Bonding of Composites Through Surface Characterization

November 1, 2011 Ashley Tracey, Lisa Carlson, Brian D. Flinn University of Washington

Improving Adhesive Bonding of Composites Through Surface Characterization

- Motivation and Key Issues
 - Most important step for bonding is SURFACE PREPARATION!!
 - Inspect the surface prior to bonding to ensure proper surface preparation
- Objective
 - Develop QA technique for surface preparation
- Approach
 - Investigate different surface preparations and process variables using laboratory and handheld devices

FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Brian D. Flinn (PI)
 - Ashley Tracey (PhD student, UW-MSE)
 - Lisa Carlson(undergraduate, UW-MSE)
- FAA Technical Monitor
 - David Westlund
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Toray Composites
 - Precision Fabrics & Richmond Aerospace & Airtech International
 - The Boeing Company (Kay Blohowiak, Peter Van Voast, William Grace, Liz Castro, John Spalding, Mary Vargas & Paul Shelley)

2010-2011 Statement of Work

	Surface Characterization/QA Technique					
	Contact Angle		FTIR			
	Goniometer	Surface Analyst	ATR	Exoscan		
Cure Temp and Dwell Time	~	~				
Peel Ply Prep	 ✓ 	✓	v	v		
Si Contaminants	 ✓ 	 ✓ 	(Boeing)			
Peel Ply Orientation	~	No effect	N/A			
Abraded Texture	✓					
Scarfed Surfaces/ Repair						

= work completed

Surface Characterization

For a good bond: 1) Adhesive must wet substrate and 2) strong chemical bonds between adhesive and substrate

Surface Energy

- Ability of adhesive to wet substrate
- Characterized by contact angle
- Contamination can lower surface energy

Surface Chemistry

- Availability of chemical bonds at the surface
- Characterized by FTIR
- Contamination changes surface chemistry

Surface preparation influences the energetics and chemistry of a substrate

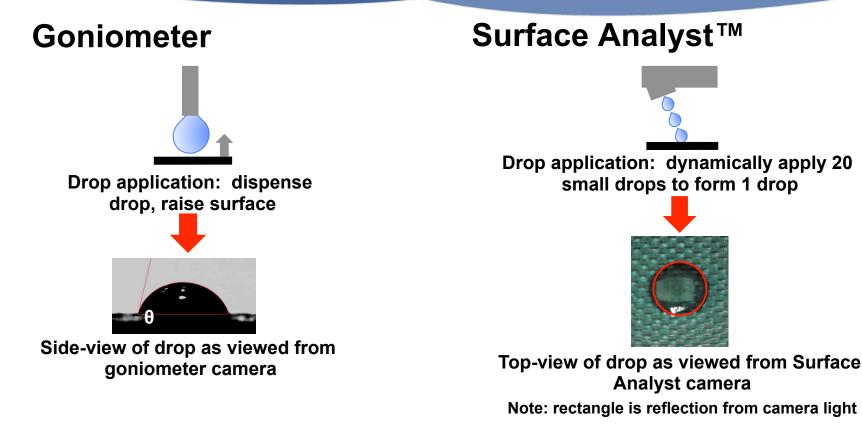
Contact Angle Methodology (Surface Energy)

VCA Optima Goniometer

- Bench top device
- Lab research

http://www.astp.com/contact-angle/optima

Brighton Surface Analyst™


- Handheld device
- In-field inspection

http://www.btgnow.com

Contact Angle Methodology

- 4 fluids
- 10 drops/fluid/substrate
- Calculate surface energy

Average contact angle

20 drops/substrate

Water only

FTIR Methodology

Interaction between IR beam and material produce spectra displaying chemical bonds in material

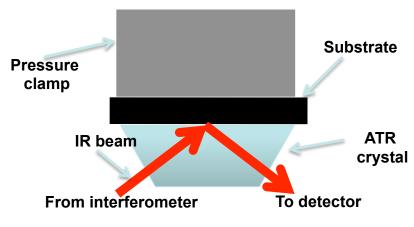
Bruker Vertex 70 FTIR

- Bench top device
- Attenuated total reflectance (ATR)

http://www.aoc.kit.edu/english/612.php

Agilent Technologies Exoscan™ FTIR

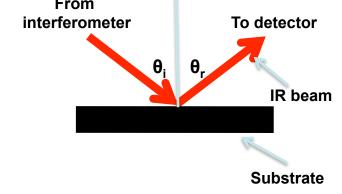
- Handheld device
- Specular reflectance



https://www.chem.agilent.com

FTIR Methodology

An IR beam path for single bounce ATR


- Single bounce MIR diamond ATR
- Use pressure clamp to ۲ ensure good contact with substrate

CECAN

From

Exoscan[™]

An IR beam path of specular reflectance

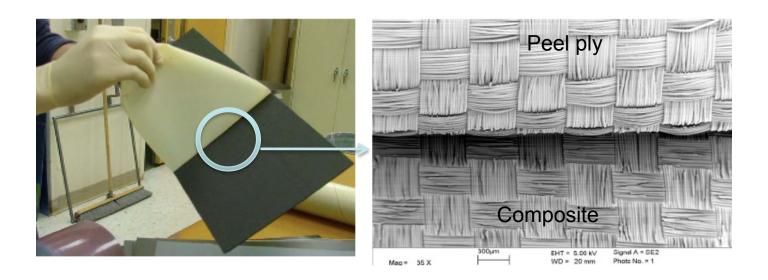
- MIR specular reflectance
- Non-contact

Assess potential QA methods ability to identify variations in process conditions

- Surface Preparations:
 - Polyester peel ply, nylon peel ply, SRB release ply
- Peel Ply Contamination:
 - Various levels of siloxane contamination
- Abrasion Variables:
 - Grit size: 80, 220, 400
 - Orientation

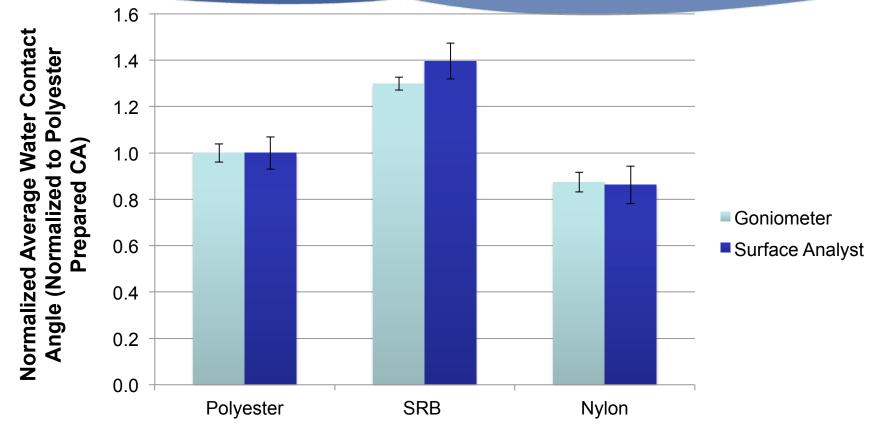
Materials and Process

- Toray 3900/T800 unidirectional laminates
- Peel ply surface prep
 - Precision Fabric Group 60001 polyester peel ply
 - Precision Fabric Group 52006 nylon peel ply
 - Precision Fabric Group SRB release ply
- Autoclave cure (177°C, 0.6MPa)
- Fluids used for contact angle analysis:
 - De-ionized water (DI water)
 - Ethylene Glycol (EG)
 - Glycerol (Gly)
 - Diiodomethane (DIM)
 - Formamide (Form)
- 3M Al₂O₃ grit abrasive cloth



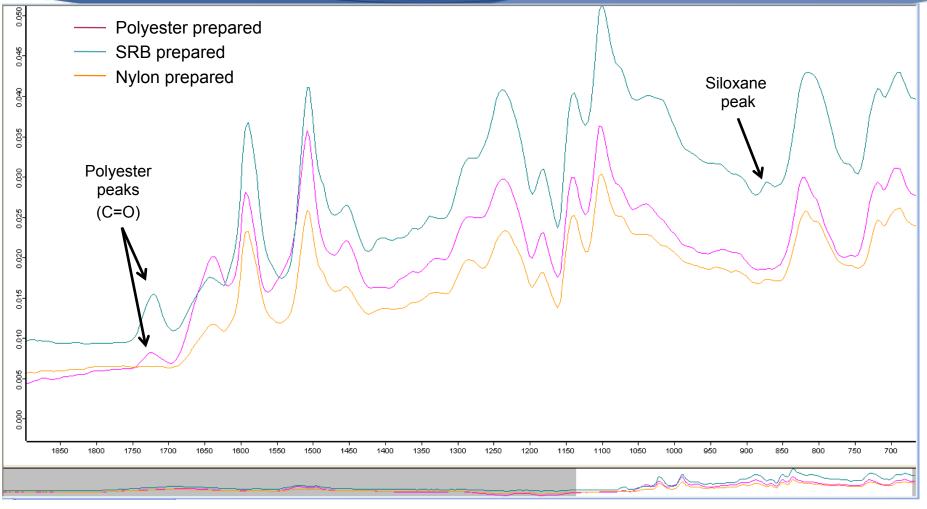
Characterization of Peel Ply Preparation

- Affect of peel ply type on surface characteristics
 - Polyester peel ply
 - Nylon peel ply
 - SRB release ply



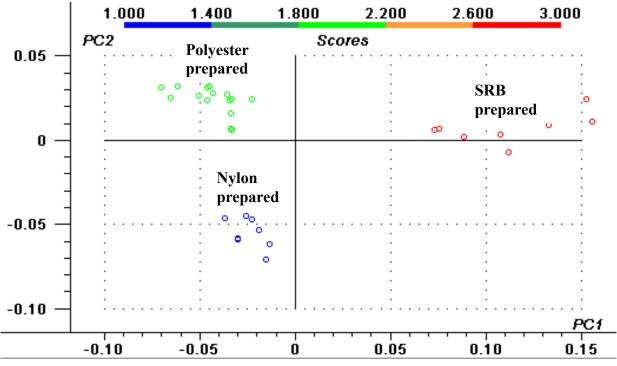
Contact Angle Results (DI H₂O)

Peel Ply Type


Both methods detect differences in peel ply type

FTIR-ATR Surface Chemistry Results

Differences in surface chemistry are evident



FTIR-Exoscan™ Surface Chemistry Results

Multivariate Analysis of Specular Reflectance Spectra

Partial least squares with Savitsky-Golay first derivative and 5 smoothing point preprocessing 2principal component model

- Method written for Exoscan[™] to identify peel ply type
- ✓ Exoscan[™] can be used to identify different peel ply/release ply surface preps

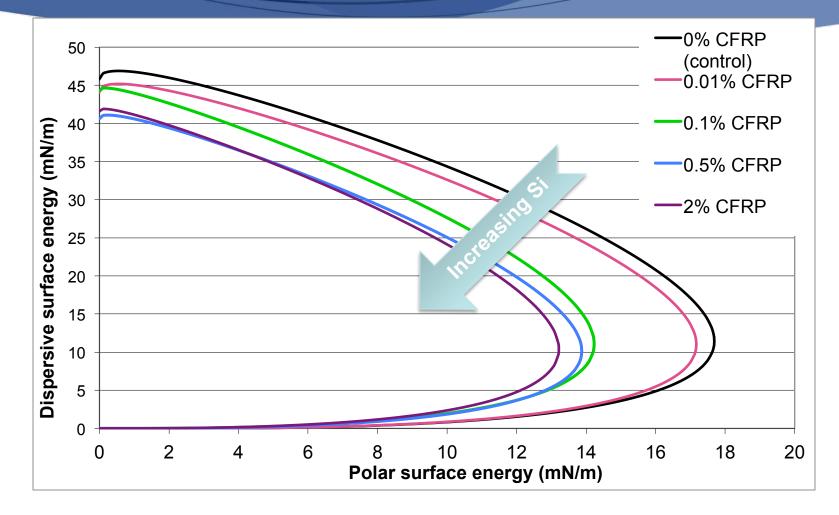
In collaboration with Paul Shelley, Boeing

Characterization of Surface Preparation

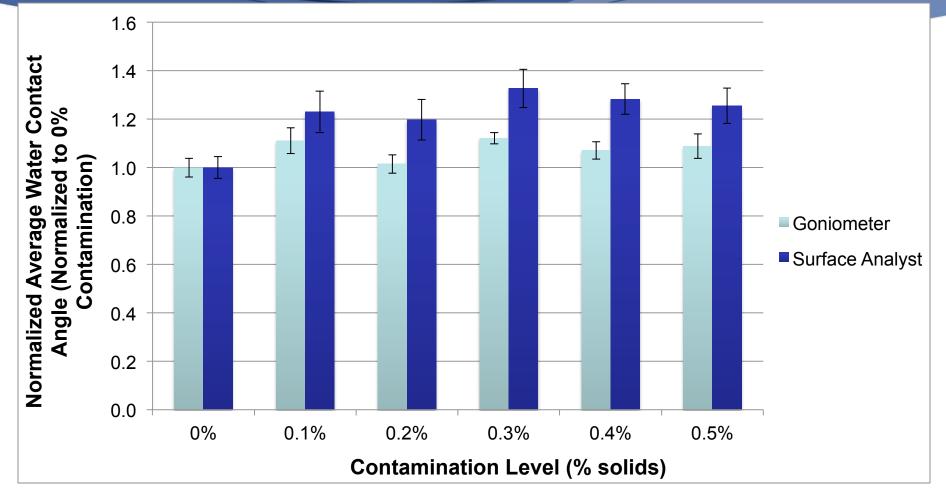
Effect of Peel Ply Contamination

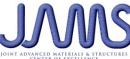
- Contaminants are detrimental to bonding
- Previous research at Boeing showed that FTIR-ATR can detect contamination levels >0.5% on the cured laminate¹
 - Can contact angle be used to identify surface contamination?

Mix Solids Target Level (% siloxane)
0% (control)
0.0001%
0.001%
0.01%
0.05%
0.1%
0.2%
0.3%
0.4%
0.5%
1% Detrimental to
2% Bonding ¹


¹ VanVoast, P.J., P.H. Shelley, R.L. Blakely, C.B. Smith, M.P. Jones, A.C. Tracey, B.D. Flinn, G. Dillingham, B. Oakley. "Effect of Varying Levels of Peel Ply Contamination on Adhesion Threshold." SAMPE 2010 – Seattle, WA May 17-20, 2010.

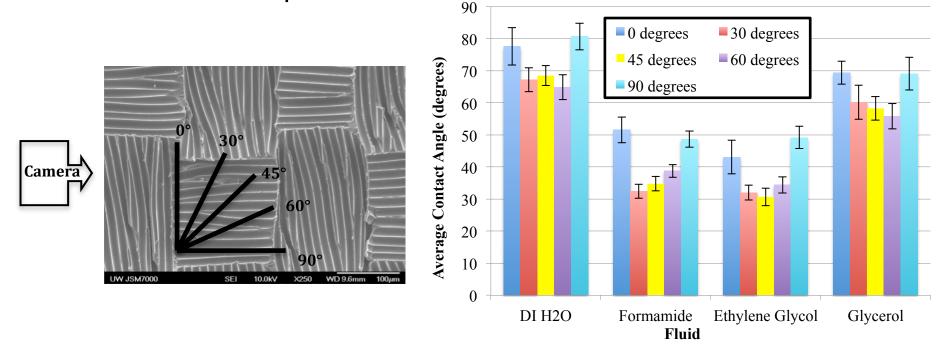
Goniometer Results: Wettability Envelopes


Contact angle sensitive to < 0.1% Si contamination</p>



Contact Angle Results

 Both methods detect contamination below that which affects bonding (1%)



Surface Roughness

 Previous research showed contact angle changes at different peel ply angles with respect to goniometer camera due to noncircular drops

- Contact angles highest at 0° or 90° orientation, lower at all other orientations
 - Measure contact angle at 0° or 90° orientation



Abrasion Texture: Stereoscope Images

- Want to further understand effect of roughness
 - Manual abrasion (surface prep)
 - As tooled surfaces abraded with 80, 220 and 400 grit abrasive cloth parallel to fiber (*l*) direction
 - Measure contact angle at longitudinal (ℓ) and transverse (r) views

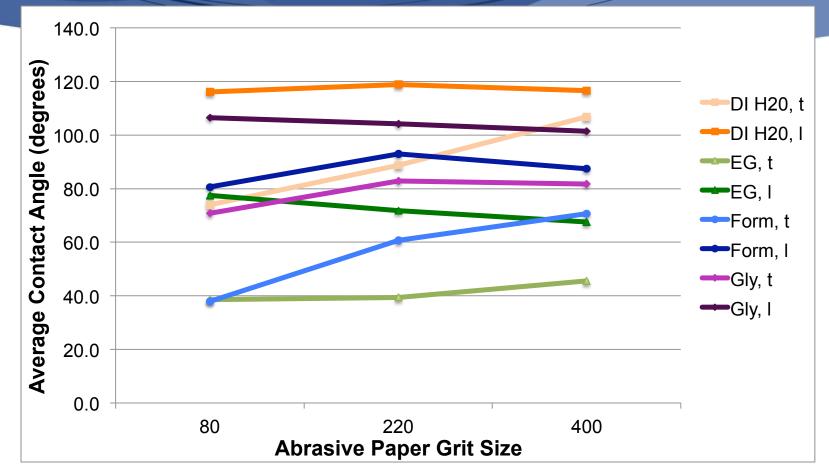
80 grit

220 grit



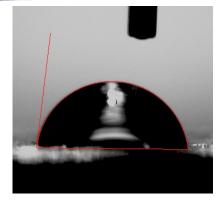
400 grit

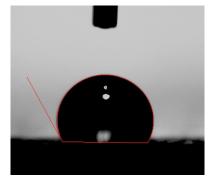
Effect of Surface Roughness on Contact Angle


Note: white circles on drops are reflection of camera light

Contact Angle: Effect of Surface Roughness

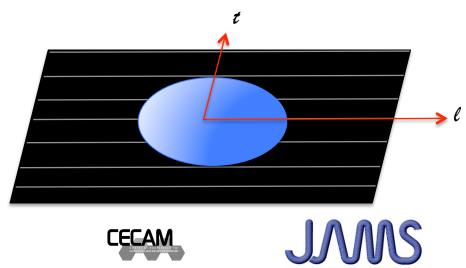
- ✓ Transverse (t) contact angle lower than longitudinal (ℓ)
 - Contact angle decreases with increased roughness
 - Exception: EG viscosity effect?





Surface Roughness and Contact Angle

- Fluids form noncircular drops on surfaces
 - Fluid flows down path of least resistance → t contact angle lower
 - Fluid arrested at peaks between grooves → ℓ contact angle higher



DI H2O on 220 grit surface viewing along *t*

DI H2O on 220 grit surface viewing along *l*

Summary

	Surface Characterization/QA Technique				
	Contact Angle		FTIR		
	Goniometer	Surface Analyst	ATR	Exoscan	
Cure Temp and Dwell Time	~	✓	TBD	TBD	
Peel Ply Prep	~	~	✓	v	
Si Contaminants	 ✓ 	✓	✓ (Boeing)	TBD	
Peel Ply Orientation	~	✓ No effect	N/A	TBD	
Abraded Texture	✓				
Scarfed Surfaces/ Repair	TBD	TBD	TBD	TBD	

More work is necessary, but contact angle and FTIR have a potential for QA methods

Looking Forward

- Benefit to Aviation
 - Better understanding of peel ply surface prep.
 - Guide development of QA methods for surface prep.
 - Greater confidence in adhesive bonds
- Future needs
 - Application to other composite/surface prep./adhesive systems (repair, paste adhesive, etc.)
 - Model to guide bonding based on characterization, surface prep. and material properties
 - QA methods to ensure proper surface for bonding

Acknowledgements

- FAA, JAMS, AMTAS JMS
- Boeing Company
- Precision Fabric Group
- Richmond Aircraft Products Richmond Aerovac
- Airtech International AIRTECH
- Prof. Mark Tuttle (UW)
- Paul Shelley (Boeing)

Thank you

Questions and comments welcome

A Center of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE