

DEVELOPMENT AND EVALUATION OF FRACTURE MECHANICS TEST METHODS FOR SANDWICH COMPOSITES

Andy Gill presenting for Dr. Dan Adams

Department of Mechanical Engineering University of Utah Salt Lake City, UT

- Principal Investigator: Dr. Dan Adams
- Graduate Student Researchers:
 - **Chris Weaver**
 - Andy Gill
 - Brad Kuramoto
 - Josh Bluth
- FAA Technical Monitor
 - Curt Davies

- Fracture mechanics test methods for composites have reached a high level of maturity
- Less attention to sandwich composites
 - Focus on particular sandwich materials
 - Focus on environmental effects
 - No consensus on a suitable test configuration or specimen geometry for Mode I or Mode II fracture toughness testing

Develop fracture mechanics test methods for sandwich composites

- Focus on facesheet core delamination
- Both Mode I and Mode II
- Suitable for ASTM standardization

- PHASE I: Identification and initial assessment of candidate test methodologies
- PHASE II: Selection and optimization of best suited Mode I and Mode II test methods
- PHASE III: Development of draft ASTM standards

PHASE I (REVIEW):

- Identify candidate Mode I and Mode II test methodologies
 - Literature review- Lead to five Mode I and eight Mode II configurations
 - □ Modifications from adhesive and composite laminate tests
 - Original concepts were also created
- Identification of materials and geometries currently in use for structural sandwich composites
- Assessment of candidate test configurations using finite element analysis
- Select promising configurations for mechanical testing

PHASE I CONTINUED

Identification and initial assessment of candidate test methodologies

- Three core materials (12-14 mm thickness)
 - Polyurethane foam core with density of 160 kg/m³ (10 lb/ft³)
 - Nomex honeycomb core
 - Aluminum honeycomb core
- Two facesheet materials (1.3-1.5 mm thickness each)
 - Woven carbon/epoxy, VARTM processed
 - Unidirectional carbon/epoxy, secondary bonding

PHASE I CONTINUED:

Finite element analysis of initial test configurations

- □ Evaluate fracture mode mixity (i.e. Mode I vs. Mode II)
- □ Analyze stress state within specimen
- Monitor crack opening after load application (Mode II)
- Determine suitable loading geometries
- Select promising Mode I and Mode II test configurations for mechanical testing

PHASE I CONTINUED:

Finite element modeling

- ANSYS 8.0 software
- Two-dimensional, plane strain, geometrically nonlinear analyses
- Crack path created with a row of overlapping nodes, coupled beyond crack tip
- Crack closure method used to calculate energy release rates, G_I and G_{II}

Mode I Investigation

Identification of Mode I test configurations

Double Cantilever Beam (DCB)

- Significant Mode II component
- Significant bending stresses in core
- Crack "kinking" for Nomex honeycomb core
- Specimen rotation due to off axis loading
- Determined to be unsuitable for a standard test method

Modified DCB (MDCB)

- Significant Mode II component
- Crack "kinking" for Nomex honeycomb core
- Determined to be unsuitable for a standard test method

Mode I Investigation

Single Cantilever Beam (SCB) with cantilever beam support

- Significant Mode II component
- Crack "kinking" for Nomex honeycomb core
- Determined to be unsuitable for a standard test method

X □ Three Point Flexure (TPF)

- Significant bending stresses in core
- Extra machining operations required for specimen
- Determined to be unsuitable for a standard test method

Mode I Investigation

- Plate-Supported SCB (MSCB)
 - Elimination of bending of sandwich specimen
 - Minimal Mode II component (less than 5%)
 - No significant bending stresses in core
 - No crack "kinking" observed
 - Appears to be suitable for a standard test method

PHASE I RESULTS:

Mode II Investigation

Identification of Mode II test configuration

- Three-point End Notch Flexure (3ENF)
- □ Mixed Mode Bending (MMB)
- End Load Split (ELS)
- Four-point delamination test
- Cracked Sandwich Beam (CSB) with hinge
- Modified CSB
- Facesheet delamination test
- DCB with uneven bending moments
- Three-point cantilever
- Double sandwich test

PHASE I RESULTS:

Mode II Investigation

- Challenges in developing a suitable Mode II test
 - Maintaining Mode II dominated crack growth with increasing crack lengths
 - Obtaining crack opening during loading
 - Obtaining stable crack growth along facesheet/core interface
 - Only two of the ten investigated test configurations produced any form of interlaminar stable crack growth
 - Modified CSB (MCSB)
 - Mixed Mode Bending (MMB)
 - □ Seven test configurations experienced crack "kinking", the other unstable

Mode II Investigation

Mixed Mode Bending (MMB)

- Crack opening as delamination propagates for foam core
- Possible to achieve high percentage Mode II (>90%) using short lever arm lengths
- Semi-stable crack growth for foam core
- Crack "kinking" for Nomex honeycomb core
- Core crushing for aluminum honeycomb core
- Not well suited for a standard Mode II test method

THE UNIVERSITY OF UTAH

PHASE I MECHANICAL TEST RESULTS:

Mode I Investigation

- Modified Cracked Sandwich Beam with Hinge
 - Creates crack opening as delamination propagates
 - High percentage Mode II (>80%) for all materials investigated
 - Semi-stable crack growth along facesheet/core interface

Appears to be suitable for a standard Mode II test method

PHASE II ACTIVITIES: Further Development of Mode I and Mode II Test Methods

- Sensitivity study determination of acceptable range of specimen parameters
- Development of suitable test fixturing
 - Development of suitable test procedures
 - Development of suitable data analysis methods

- ☐ Thickness, flexural stiffness, flexural strength
- Core parameters
 - □ Thickness, density, stiffness, strength
- Specimen and delamination geometry

CURRENT FOCUS: Mode I Sensitivity Study

- Use of plate-supported Single Cantilever Beam (SCB) test
- Focus on two parameters of concern
 - Sandwich core material
 - Facesheet thickness
- Investigate mode mixity for range of delamination lengths
 Applied Load Piano Hinge

1.4		
THE U	MODE I SENSITIVITY STUDY:	A Center of Excellence
UNIVERSITY of UTAH	Effect of Core Material on %Mode	

- Mode I dominant over range of cores considered
- Minimal variability among materials and crack lengths
- Test appears suitable for a wide range of common core materials

Woven carbon/epoxy facesheets, polyurethane foam core

Mode I dominant over range of facesheet thicknesses considered

- Ability to test 1 in. to 3 in. wide sandwich specimens
- Edge clamp restraints to lower panel support
- Translating fixture base

CURRENT FOCUS: Mode II Sensitivity Study

- Use of Modified Cracked Sandwich Beam
- Determination of acceptable range of specimen parameters
 - Core thickness, stiffness
 - Facesheet flexural stiffness
- Investigate mode mixity and crack opening for range of delamination lengths

MODE II SENSITIVITY STUDY: Effect of Core Material

 Varying the cores in plane modulus has little affect on % Mode II

THE

UNIVERSITY

OF UTAH

- Foam, Nomex, and aluminum honeycomb all remained above 90%
- Failure of test decided when there is core/facesheet interaction
- In plane modulus of core affects crack length at which interaction begins
- Use trend line to develop MCSB core material test limits

 4.50E+07

 4.00E+07

 3.50E+07

 3.00E+07

 2.50E+07

 2.00E+07

 1.50E+07

 1.50E+07

 5.00E+06

 0.00E+00

0

10

20

Longitudinal Direction Modulus of Core vs. Critical

Crack Size

Critical Crack Size (mm)

40

50

60

70

30

- Modified three-point flexure configuration
- Emphasis on minimizing specialized specimen preparation-core removal
- Proposed design would support top face sheet without need of core removal

UPCOMING ACTIVITIES: Further Development of Mode I and Mode II Test Methods

- Sensitivity study determination of acceptable range of specimen parameters
 - Computational simulations to determine limits
 - Experimental validation of limits
- Fabrication and evaluation of test fixturing
- Development of suitable test procedures
- Development of suitable data analysis methods

Thank You For Your Time Any Questions