Composite Thermal Damage Measurement with Handheld FTIR

November 14, 2013
B.D. Flinn, T. Howie, A.C. Tracey, D. Pate,
J.T. Morasch, E. Roberts
University of Washington
Motivation and Key Issues

- Damage detection in composites requires different techniques than metals
- Incipient thermal damage occurs below traditional NDE detection limits

Objective

- Determine if handheld FTIR can detect thermal damage and guide repair

Approach

- Characterize panels with controlled thermal damage and perform repair based on FTIR inspection
FAA Sponsored Project Information

- Principal Investigators & Researchers
 - Brian Flinn (PI)
 - Ashley Tracey (PhD student, UW-MSE)
 - Tucker Howie (PhD student, UW-MSE)
- FAA Technical Monitor
 - David Galella (year 3)
 - Paul Swindell (year 1 & 2)
- Industry Participation
 - The Boeing Company (Paul Shelley, Paul Vahey)
 - Sandia National Lab (Dennis Roach)
 - Agilent (formerly A2 Technologies)
Background

- Continuation of existing project (year 3 of 3)
- Years 1 and 2 (A2 Technologies, Boeing and U of DE)
 - Characterization of homogeneous thermal damage
 - Ultrasound
 - Short beam shear (SBS)
 - Microscopy
 - Handheld FTIR (ExoScan)
 - Calibration curve for FTIR detection of thermal damage (SBS data)
 - Mapped surface of localized thermal damage
- Year 3 (UW and Boeing)
 - 3-D characterization of localized thermal damage
 - Contact angle and fluorescence spectroscopy
 - FTIR guided scarf repair
 - Test repair
- SBS, ultrasound, and microscopic analysis of composites with thermal damage
 - Properties degrade before detection possible → need method to detect incipient thermal damage (ITD)
- SBS, ultrasound, and microscopic analysis of composites with thermal damage
 - Properties degrade before detection possible → need method to detect incipient thermal damage (ITD)
Summary of Work Completed

<table>
<thead>
<tr>
<th></th>
<th>FTIR</th>
<th>Contact Angle</th>
<th>Fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Damage</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Resin rich (tooled) surface</td>
<td>oxidation peaks characterized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber rich (sanded) surface</td>
<td>oxidation peaks absent \rightarrow multivariate analysis (MVA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber orientation</td>
<td>signal varies with orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface finish</td>
<td>can only compare surfaces with MVA when surface finish is same</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Work Completed

<table>
<thead>
<tr>
<th></th>
<th>FTIR</th>
<th>Contact Angle</th>
<th>Fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Damage</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resin rich (tooled) surface</td>
<td>oxidation peaks characterized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber rich (sanded) surface</td>
<td>oxidation peaks absent → multivariate analysis (MVA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber orientation</td>
<td>signal varies with orientation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface finish</td>
<td>can only compare surfaces with MVA when surface finish is same</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Overview

- Thermally Damaged SBS samples
- FTIR measurements on SBS samples
- Develop calibration curve for FTIR from SBS values
- Predict evaluation set to validate model
- Composite panel locally damaged
- Panel Mapped using FTIR
- Panel cut up for mechanical testing
 - SBS
 - Tg (DMA)
Materials and Process

- Toray T800/3900 composites with various levels of thermal damage
 - SBS samples provided from Year 1 & 2 research
 - SBS samples thermally exposed in air
 - Locally damaged panels heated in air – UW/Boeing

- Sand SBS surfaces with 180 grit \(\text{Al}_2\text{O}_3 \) sanding pads
- Measure sanded surface with diffuse reflectance FTIR
 - 3 measurements per sample
 - 3 samples per time/temp

- Use MVA to develop calibration curve for thermal damage
 - GRAMS IQ software
Materials and Process – FTIR

- Mid-IR data region: 4000 cm\(^{-1}\) to 650 cm\(^{-1}\)
- Diffuse reflectance sampling interface
- Data collection: 90 coadded scans with 16 cm\(^{-1}\) resolution for background and specimen

An infrared beam path for diffuse reflectance
Resin Rich vs. Fiber Rich Surfaces

- Resin rich surfaces: oxidation peaks increase with damage
- Fiber rich surfaces: oxidation removed by sanding
 - Need MVA to determine differences in spectra and correlate to SBS data
Spectral Analysis

- FTIR spectra of CFRP surfaces complex
 - Multiple constituents → many spectral peaks
- How to analyze spectra with confidence?
 - Multivariate analysis!
- Principal Component Analysis (PCA)
 - Exploratory to identify trends
 - Peak locations and intensities
 - Used to develop models
Effect of Sanding Variables on FTIR

- Variables: temperature, method (hand vs. orbital), direction of sanding, grit size
Effect of Sanding Variables on FTIR

- FTIR Results influenced by sanding technique
- Measure consistent surfaces and develop model
Developing FTIR Model

- SBS samples sanded and measured with FTIR
- FTIR spectra processed to remove baseline effects
 - 1st derivative with Savitzky-Golay 7pt smoothing
- Partial Least Squares model developed using MVA on processed spectra

Raw Spectra

Processed Spectra
FTIR Model

R² = 0.9244

Data fits model
Model Validation

- Model used to predict SBS retention in independent evaluation set
- Error in model determined

\[
\%\text{Error} = \frac{\text{predicted} - \text{actual}}{\text{actual}} \times 100\%
\]
Localized Heat Damage – Process
Different levels of thermal damage detected by FTIR

Cut panels into SBS and dynamic mechanical analysis (DMA) samples for mechanical testing
- Damaged panel cut into SBS and DMA coupons
- Testing in progress
- Compare SBS and T_g to determine best method to correlate to FTIR
Summary

- FTIR measurements sensitive to surface finish
 - Need to test samples with consistently sanded surfaces
- Calibration model developed from SBS samples
 - Model predicted evaluation set well
- Panels created with localized thermal damage and surface mapped with FTIR
- SBS and DMA testing in progress to correlate mechanical damage to FTIR spectra
Future Work

- Map thermally damage panels provided from Years 1 & 2 with FTIR
- Determine mechanical test to correlate damage to spectra
- Characterize thermally damage of panels provided from Years 1 & 2
- Perform scarfed repair guided by FTIR
- Test scarfed repair
Looking Forward

- Benefit to Aviation
 - Improved damage detection
 - Greater confidence in repairs

- Future needs
 - Application to other composite systems
 - Other applications of handheld FTIR
 - Chemical damage
 - Surface prep for bonding
Fluorescent Thermal Damage Probe

Probe-doped coating
1 hr @ 450 °F

Thermal exposure on composite
Fluorescence emission
Fluorescence inspection

Funded by: The Boeing Co.
Acknowledgements

FAA, JAMS, AMTAS
Boeing Company
- Paul Vahey, Paul Shelly, Greg Werner, Megan Watson, Jim Chanes

Sandia National Labs
Agilent Technologies
UW MSE