

A part of the FAA Joint Advanced Materials & Structures Center of Excellence

Composite Thermal Damage Measurement with Handheld FTIR

November 14, 2013 B.D. Flinn, T. Howie, A.C. Tracey, D. Pate, J.T. Morasch, E. Roberts University of Washington

- Motivation and Key Issues
 - Damage detection in composites requires different techniques than metals
 - Incipient thermal damage occurs below traditional NDE detection limits
- Objective
 - Determine if handheld FTIR can detect thermal damage and guide repair
- Approach
 - Characterize panels with controlled thermal damage and perform repair based on FTIR inspection

15 FAA Sponsored **Project Information** Advanced Materials in Transport Aircraft Structures

- Principal Investigators & Researchers
 - Brian Flinn (PI)

A Center of Excellence

- Ashley Tracey (PhD student, UW-MSE)
- Tucker Howie (PhD student, UW-MSE)
- **FAA** Technical Monitor
 - David Galella (year 3)
 - Paul Swindell (year 1 & 2)
- Industry Participation
 - The Boeing Company (Paul Shelley, Paul Vahey)
 - Sandia National Lab (Dennis Roach)
 - Agilent (formerly A2 Technologies)

- Continuation of existing project (year 3 of 3)
- Years 1 and 2 (A2 Technologies, Boeing and U of DE)
 - Characterization of homogeneous thermal damage
 - Ultrasound
 - Short beam shear (SBS)
 - Microscopy
 - Handheld FTIR (ExoScan)
 - Calibration curve for FTIR detection of thermal damage (SBS data)
 - Mapped surface of localized thermal damage
- Year 3 (UW and Boeing)
 - 3-D characterization of localized thermal damage
 - Contact angle and fluorescence spectroscopy
 - FTIR guided scarf repair
 - Test repair

Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures Advanced Materials in Thermal Damage vs.

Short Beam Shear Strength Retention vs. Temp./Time – Epoxy

- SBS, ultrasound, and microscopic analysis of composites with thermal damage
 - Properties degrade before detection possible → need method to detect incipient thermal damage (ITD)

Advanced Materials in Transport Aircraft Structures Thermal Damage vs.

No cracks visible in miscographs Onset of 100 crack development visible in micrographs, SBS retention 80 70 Damage becomes visible in C-Scans * 60-🗖 30min 48min 77min 123min 50° 198min 318min 510min 325 355 385 415 445 475 505 535 exposure temp [deg F]

Short Beam Shear Strength Retention vs. Temp./Time – Epoxy

- SBS, ultrasound, and microscopic analysis of composites with thermal damage
 - Properties degrade before detection possible → need method to detect incipient thermal damage (ITD)

LAS Summary of Work Completed

	FTIR	Contact Angle	Fluor- escence
Thermal Damage	✓	×	×
Resin rich (tooled) surface	oxidation peaks characterized		
Fiber rich (sanded) surface	oxidation peaks absent \rightarrow multivariate analysis (MVA)		
Fiber orientation	signal varies with orientation		
Surface finish	can only compare surfaces with MVA when surface finish is same		

A Center of Excellence

Advanced Materials in Transport Aircraft Structures

LAS Summary of Work Completed

	FTIR	Contact Angle	Fluor- escence
Thermal Damage	✓	×	×
Resin rich (tooled) surface	oxidation peaks characterized		
Fiber rich (sanded) surface	oxidation peaks absent → multivariate analysis (MVA)		
Fiber orientation	signal varies with orientation		
Surface finish	can only compare surfaces with MVA when surface finish is same		

A Center of Excellence

Advanced Materials in Transport Aircraft Structures

Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures

- Thermally Damaged SBS samples
- FTIR measurements on SBS samples
- Develop calibration curve for FTIR from SBS values
- Predict evaluation set to validate model
- Composite panel locally damaged
- Panel Mapped using FTIR
- Panel cut up for mechanical testing
 - SBS
 - Tg (DMA)

Advanced Materials in Transport Aircraft Structures Advanced Materials in

- Toray T800/3900 composites with various levels of thermal damage
 - SBS samples provided from Year 1 & 2 research
 - SBS samples thermally exposed in air
 - Locally damaged panels heated in air UW/Boeing
- Sand SBS surfaces with 180 grit Al₂O₃ sanding pads
- Measure sanded surface with diffuse reflectance FTIR
 - 3 measurements per sample
 - 3 samples per time/temp
- Use MVA to develop calibration curve for thermal damage
 - GRAMS IQ software

Advanced Materials in Transport Aircraft Structures Advanced Materials in

- Mid-IR data region: 4000 cm⁻¹ to 650 cm⁻¹
- Diffuse reflectance sampling interface
- Data collection: 90 coadded scans with 16 cm⁻¹ resolution for background and specimen

- Resin rich surfaces: oxidation peaks increase with damage
- Fiber rich surfaces: oxidation removed by sanding
 - Need MVA to determine differences in spectra and correlate to SBS data

- FTIR spectra of CFRP surfaces complex
 - Multiple constituents \rightarrow many spectral peaks
- How to analyze spectra with confidence?
 - Multivariate analysis!
- Principal Component Analysis (PCA)
 - Exploratory to identify trends
 - Peak locations and intensities
 - Used to develop models

Advanced Materials in Transport Aircraft Structures Effect of Sanding Variables on FTIR

 Variables: temperature, method (hand vs. orbital), direction of sanding, grit size

Direction of Sanding

Sanding Method

FTIR Results influenced by sanding technique
Measure consistent surfaces and develop model

Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures Advanced Materials in Transport Aircraft Structures

- SBS samples sanded and measured with FTIR
- FTIR spectra processed to remove baseline effects
 - 1st derivative with Savitzky-Golay 7pt smoothing
- Partial Least Squares model developed using MVA on processed spectra

Data fits model

Model Validation

- Model used to predict SBS retention in independent evaluation set
- Error in model determined

Advanced Materials in Transport Aircraft Structures Localized Heat Damage – Process

Advanced Materials in Transport Aircraft Structures Localized Heat-Damage Mapping

- Different levels of thermal damage detected by FTIR
 - Cut panels into SBS and dynamic mechanical analysis (DMA) samples for mechanical testing

- Damaged panel cut into SBS and DMA coupons
- Testing in progress
- Compare SBS and T_g to determine best method to correlate to FTIR

- FTIR measurements sensitive to surface finish
 - Need to test samples with consistently sanded surfaces
- Calibration model developed from SBS samples
 - Model predicted evaluation set well
- Panels created with localized thermal damage and surface mapped with FTIR
- SBS and DMA testing in progress to correlate mechanical damage to FTIR spectra

- Map thermally damage panels provided from Years 1 & 2 with FTIR
- Determine mechanical test to correlate damage to spectra
- Characterize thermally damage of panels provided from Years 1 & 2
- Perform scarfed repair guided by FTIR
- Test scarfed repair

- Benefit to Aviation
 - Improved damage detection
 - Greater confidence in repairs
- Future needs
 - Application to other composite systems
 - Other applications of handheld FTIR
 - Chemical damage
 - Surface prep for bonding

Advanced Materials in Transport Aircraft Structures Fluorescent Thermal Damage Probe

Fluorescence inspection

Thermal exposure on composite

Probe-doped coating 1 hr @ 450 °F

Funded by: The Boeing Co.

FAA, JAMS, AMTAS JMS

Boeing Company

Paul Vahey, Paul Shelly, Greg Werner, Megan Watson, Jim Chanes

Sandia National Labs 🔟

Agilent Technologies

UW MSE W MATERIALS SCIENCE & ENGINEERING UNIVERSITY of WASHINGTON

Sandia National Laboratories

Agilent Technologies