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Composite Thermal 
Damage Measurement 
with Handheld FTIR 

§  Motivation and Key Issues  
§  Damage detection in composites requires different  

techniques than metals 
§  Incipient thermal damage occurs below traditional NDE 

detection limits 

§  Objective 
§  Determine if handheld FTIR can detect thermal damage and 

guide repair 
§  Approach 

§  Characterize panels with controlled thermal damage and 
perform repair based on FTIR inspection 
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Background 
§  Continuation of existing project (year 3 of 3) 
§  Years 1 and 2 (A2 Technologies, Boeing and U of DE) 

§  Characterization of homogeneous thermal damage 
§  Ultrasound 
§  Short beam shear (SBS) 
§  Microscopy 
§  Handheld FTIR (ExoScan) 

§  Calibration curve for FTIR detection of thermal damage (SBS 
data) 

§  Mapped surface of localized thermal damage 
§  Year 3 (UW and Boeing) 

§  3-D characterization of localized thermal damage 
§  Contact angle and fluorescence spectroscopy 
§  FTIR guided scarf repair 
§  Test repair 
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Thermal Damage vs. 
Detection Method 

§  SBS, ultrasound, and microscopic analysis of composites 
with thermal damage 
§  Properties degrade before detection possible à need 

method to detect incipient thermal damage (ITD) 

Short Beam Shear Strength Retention vs. Temp./Time – Epoxy 1

Onset of 
crack 

development 
visible in 

micrographs,

No cracks visible in micrographs 

Damage becomes visible in C-Scans
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Summary of Work 
Completed 

FTIR Contact 
Angle 

Fluor-
escence 

Thermal Damage ✔ ✗ ✗ 
Resin rich 
(tooled) surface oxidation peaks characterized 

Fiber rich 
(sanded) surface 

oxidation peaks absent à 
multivariate analysis (MVA) 

Fiber 
orientation signal varies with orientation 

Surface 
finish 

can only compare surfaces 
with MVA when surface finish 

is same 
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Experimental 
Overview 

§  Thermally Damaged SBS samples 
§  FTIR measurements on SBS samples 
§  Develop calibration curve for FTIR from 

SBS values 
§  Predict evaluation set to validate model 
§  Composite panel locally damaged 
§  Panel Mapped using FTIR 
§  Panel cut up for mechanical testing 

§  SBS 
§  Tg (DMA) 
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Materials and 
Process 

§  Toray T800/3900 composites with various levels of 
thermal damage 
§  SBS samples provided from Year 1 & 2 research 
§  SBS samples thermally exposed in air 
§  Locally damaged panels heated in air – UW/Boeing 

§  Sand SBS surfaces with 180 grit Al2O3 sanding pads 
§  Measure sanded surface with diffuse reflectance FTIR 

§  3 measurements per sample 
§  3 samples per time/temp 

§  Use MVA to develop calibration curve for 
thermal damage 
§  GRAMS IQ software 

9 measurements 
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Materials and 
Process – FTIR 

§  Mid-IR data region: 4000 cm-1 to 650 cm-1  
§  Diffuse reflectance sampling interface 
§  Data collection: 90 coadded scans with 16 cm-1 

resolution for background and specimen 
 

An infrared beam path for diffuse 
reflectance 

Mirror 

Substrate 
Reflected 

Beam 

IR beam from 
interferometer 
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Resin Rich vs. Fiber 
Rich Surfaces 

§  Resin rich surfaces: oxidation peaks increase with 
damage 

§  Fiber rich surfaces: oxidation removed by sanding 
Ø  Need MVA to determine differences in spectra and 

correlate to SBS data 
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Spectral Analysis 

§  FTIR spectra of CFRP surfaces complex 
§  Multiple constituents à many spectral peaks 

§  How to analyze spectra with confidence? 
§  Multivariate analysis! 

 §  Principal Component 
Analysis (PCA)  
§  Exploratory to 

identify trends  
§  Peak locations and 

intensities 
§  Used to develop 

models 
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Effect of Sanding 
Variables on FTIR   

§  Variables: temperature, method (hand vs. 
orbital), direction of sanding, grit size 
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Effect of Sanding  
Variables on FTIR 

Ø  FTIR Results influenced by sanding technique 
Ø  Measure consistent surfaces and develop model 
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Developing FTIR 
Model 

§  SBS samples sanded and measured with FTIR 
§  FTIR spectra processed to remove baseline 

effects 
§  1st derivative with Savitzky-Golay 7pt smoothing 

§  Partial Least Squares model developed using 
MVA on processed spectra 

Raw Spectra Processed Spectra 
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FTIR Model 

ü  Data fits model 
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Model Validation 

§  Model used to predict SBS retention in independent 
evaluation set 

§  Error in model determined  
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Localized Heat 
Damage – Process  
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Localized Heat-
Damage Mapping 

§  Different levels of thermal damage detected by FTIR 
Ø  Cut panels into SBS and dynamic mechanical analysis 

(DMA) samples for mechanical testing 
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SBS and DMA Testing 

§  Damaged panel cut into 
SBS and DMA coupons 

§  Testing in progress 
§  Compare SBS and Tg to 

determine best method 
to correlate to FTIR 
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Summary 

§  FTIR measurements sensitive to surface 
finish 
§  Need to test samples with consistently 

sanded surfaces 
§  Calibration model developed from SBS 

samples  
§  Model predicted evaluation set well 

§  Panels created with localized thermal 
damage and surface mapped with FTIR 

§  SBS and DMA testing in progress to 
correlate mechanical damage to FTIR 
spectra 
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Future Work 

§  Map thermally damage panels 
provided from Years 1 & 2 with FTIR 

§  Determine mechanical test to 
correlate damage to spectra 

§  Characterize thermally damage of 
panels provided from Years 1 & 2 

§  Perform scarfed repair guided by FTIR 
§  Test scarfed repair 
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Looking Forward 

§  Benefit to Aviation 
§  Improved damage detection 
§  Greater confidence in repairs 

§  Future needs 
§  Application to other composite 

systems 
§  Other applications of handheld FTIR 

§  Chemical damage 
§  Surface prep for bonding 
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Fluorescent Thermal 
Damage Probe 

1 inch 

Thermal exposure on composite Fluorescence emission 

Fluorescence inspection 

Funded by: The Boeing Co. 

Probe-doped coating 
1 hr @ 450 °F 
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