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Project Motivation 

Motivation and Key Issues  
●  Damage detection in composites requires different  

techniques than metals 
●  Incipient thermal damage (ITD) occurs below traditional non-

destructive evaluation (NDE) detection limits 
§  ITD is chemical damage. NDE detects physical damage 

such as delaminations and microcracking 
Objective 

●  Determine if handheld Fourier transform infrared (FTIR) 
spectroscopy can detect ITD and guide repair 

Approach 
●  Characterize panels with controlled thermal damage and 

perform repair based on FTIR inspection 
 

3 



Project Background 

Continuation of existing project (year 4 of 4) 
Years 1 and 2 (A2 Technologies, Boeing and U of DE) 

●  Characterization of homogeneous thermal damage 
§  Ultrasound 
§  Short beam strength (SBS) 
§  Microscopy 
§  Handheld Fourier transform infrared (FTIR) spectroscopy 

(ExoScan) 
●  Calibration curve for FTIR detection of thermal damage (SBS data) 
●  Mapped surface of localized thermal damage on resin rich surface 

Year 3 & 4 (UW and Boeing) 
●  Contact angle and fluorescence spectroscopy 
●  3-D characterization of localized thermal damage 
●  FTIR guided scarf repair 
●  Mechanical testing of locally damaged and repaired panels 
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Thermal Damage vs. 
Detection Method 

Short beam strength (SBS) degrades before detection possible with 
ultrasound or visual inspection 
●  Damage termed ITD 

Need a method to detect ITD 
Ø  FTIR? 
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Experimental Overview 

FTIR 
measurements 

on SBS samples 

Develop calibration 
model relating FTIR to 

SBS 

Validate model 
w/ independent 

set  

FTIR map locally 
damaged panel 

FTIR guided 
scarfed repair 

Test Repair  
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Materials and Process 

•  Toray T800/3900 composites with various levels of thermal damage 
•  SBS calibration samples thermally exposed in convection oven 
•  Panels with localized damage from heat blanket and insulation 

•  Sand surfaces with 180 grit Al2O3 sanding pads using pneumatic 
orbital sander to simulate repair 

•  FTIR spectra taken with Exoscan FTIR using diffuse reflectance 
•  Mid-IR range: 4000 cm-1 to 650 cm-1  
•  90 scans, 16 cm-1 resolution 
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SBS Calibration Samples 

•  Range of thermal exposure chosen using Design of Experiments 
(DOE) in ITD region  

•  FSBS values ranged from 43.9 Mpa to 84.4 MPa  (undamaged FSBS 
= 88.8 MPa) 
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•  24-ply unidirectional 12 in x 12 in panels subjected to localized hotspot 
•  Local hotspot from heat blanket + extra insulation layers in center of panel 
•  Panels exposed for 1 hour at one of three peak temperatures (440 °F, 465 

°F, 490 °F)  
•  Panels referred to as low, medium, and high exposure respectively 

Locally Heated Panel Setup 

Small 

Small 

Small ~ 7.0 cm 

Intermediate ~ 9.5 cm 

Large ~ 12.1 cm 

Insulation Stacking 
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Panel Mapping Procedures 

•  Grid with 0.5 in between points marked on edges of panel 
•  FTIR positioned using rulers to align with grid 
•  Measurements taken at every point on grid 

•  3 measurements taken at every point 
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Panel Sanding 

•  Located damage based on FTIR inspection and sanded down to 
next ply 
•  Small areas of over-sanding leading to resin rich spots 
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Effect of Spectral Features 
on Model Predictions 

•  Resin rich spectra exhibit broad carbonyl peak between 1600-1690 cm-1 
•  Predicted lower FSBS values 

•  Noisy spectra were observed by an increase in noise in the baseline  
•  Predicted higher FSBS values 
•  Can be mitigated by taking a new background reference 

Noisy 
Spectra 

Resin 
Rich 

Surface Map of Low Exposure Panel 

13 



Comparison of Surface 
Mappings Predictions 
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•  Reasonable agreement between predictions results on the two surfaces 

* Measurements performed by A2 Technologies and Boeing 



Inspection of Low 
Exposure Panel 

 
•  Low exposure panel used to establish a Go/No Go threshold to damage removal 
•  Sanded down 2 plies to evaluate prediction variance 

•  79.5 MPa (90% retention of undamaged FSBS) chosen as the threshold           
(Green or blue color on the map) 
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Inspection of Medium 
Exposure Panel 

•  Medium exposure panel exhibited moderate damage in 3” x 3”  
•  Low FSBS values around 74-75 MPa (~ 82 % of undamaged FSBS) 

•  Most of the damage was removed after sanding to the first ply down 
•  Panel passed Go/No Go threshold after sanding 3 plies down 
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Inspection of High 
Exposure Panel 

•  High exposure panel had large damage region ~ 5” x 5” 
•  Low FSBS values around 72-73 MPa (~ 80 % of undamaged FSBS) 

•  Go/No Go threshold not passed in the center of the panel after sanding 
down 14 plies 

•  Inspection stopped due to repair size restriction 17 
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Repair Process 

•  After inspection was completed panels were sanded to a 30:1 scarf angle 
•  Patch plies were cut from Toray T800/3900 unidirectional prepreg 

•  The high exposure patch was double vacuum debulked (DVD) to help 
removal volatiles that could be trapped in a thick patch 

•  MetlBond 1515-3M adhesive 
•  Patches were cured under a vacuum using a heat blanket controlled by a hot 

bonder at 350 °F for 2.5 hours 
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Scarf repair diagram from 
http://www.netcomposites.com/ 



Inspection of Repairs 

•  Repaired panels inspected using ultrasound 
•  5Mhz 2.5” Focused TTU 
•  6” Water Path 
•  .04 Resolution 

•  Repairs appear to be good 
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Ongoing Work 

•  Mechanical testing of repaired and duplicate damage panels to 
evaluate removal of ITD 
•  Short beam strength 

•  Gives interlaminar shear stress and is known to be sensitive to 
incipient thermal damage 

•  Max shear stress occurs at center of the sample, but most 
damage is on the plies near surface 

•  Tension test with 45° samples 
•  Sensitive to matrix dominated properties 
•  May not be sensitive to damage in ITD range 

•  Compression after impact 
•  Sensitive to ITD 
•  Potentially sensitive to surface damage 
•  Number of test samples 

20 Positive properties of test  Negatives properties of test 
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Ongoing Work 

 
•  Making three additional panels to determine effectiveness of testing 

method prior to testing panels 
•  Undamaged Panel 
•  Undamaged Panel with large repair 
•  Extra damage panel exposed at ~ 480 °F for 1 hr 

•  If tensile test can detect ITD the remaining six panels (3 repaired and 
3 damaged) panels will be tested 

 
•  This work should be completed by December 31, 2014 
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Summary 

•  Improved consistency of model predictions 
•  Go/No Go Threshold set at prediction of 90 % FSBS retention 
•  Used FTIR to map and guide repair of thermally damaged panels 

•  Low exposure panel exhibited almost no damage 
•  Medium exposure panel had moderate damage which was removed 

after sanding down 3 plies 
•  Part of high exposure panel did not reach Go/No Go threshold after 

removing 14 plies 
•  Stopped to repair size restrictions 

•  Panels repaired using scarf repair process 
•  Repaired panels inspected with ultrasound and repaired panels look 

good 
•  Mechanical testing of panels is currently ongoing 
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Looking Forward 

•  Benefit to Aviation 
•  Improved damage detection 
•  Greater confidence in repairs 

•  Future needs 
•  Application to other composite systems 
•  Other applications of handheld FTIR 

•  Chemical damage 
•  Surface prep for bonding 
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QUESTIONS? 



•  Proper&es	
  desired	
  for	
  mechanical	
  tes&ng	
  
•  Need	
  to	
  test	
  both	
  repaired	
  and	
  damaged	
  panels	
  to	
  compare	
  results	
  
•  Tests	
  matrix	
  dominated	
  proper&es	
  
•  Preferably	
  large	
  area	
  such	
  that	
  it	
  contains	
  a	
  significant	
  por&on	
  of	
  damaged	
  region	
  
•  Prefer	
  failure	
  of	
  composite	
  rather	
  than	
  bondline	
  in	
  repaired	
  panels	
  

•  Damage	
  distribu&on	
  in	
  the	
  panels	
  
•  Highest	
  damage	
  on	
  surface	
  in	
  the	
  center	
  of	
  the	
  panel	
  
•  Damage	
  decreases	
  radially	
  outward	
  from	
  the	
  center	
  on	
  the	
  panel	
  
•  Damage	
  into	
  the	
  depth	
  of	
  panel	
  has	
  ellipsoidal	
  form	
  

Considera*ons  for  Mechanical  Tes*ng


Representa&ve	
  cross-­‐sec&on	
  of	
  damage	
  area	
  	
  
taken	
  along	
  red	
  dashed	
  line	
  

Top	
  View	
  of	
  Damage	
  Panel	
  

Red	
  =	
  high	
  damage	
  
Blue/Green	
  =	
  light	
  damage	
  

Black	
  =	
  no	
  damage	
  
	
  



Generating Calibration Model 

•  Model needed to correlate FTIR spectra to FSBS data 
•  Spectra preprocessed using Savitzky-Golay 1st derivative and 7-pt 

smoothing 
•  Removes baseline effects 
•  Accentuates differences in spectra 

•  Partial Least Squares (PLS) model generated using Principal 
Components Analysis (PCA) in GRAMS IQ software  

Raw Spectra Processed Spectra 
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Calibration Model and Model Validation 

Model validated by predicting independent evaluation set 
●  Model showed good predictive capabilities of evaluation set 

(~85% of samples had < 5% error) 
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ü  PLS model relating the SBS measurements to FTIR spectra successfully generated 
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Model Development 

Models generated by altering 3 variables 
●  Sample Setà lower FSBS values may skew model (physical 

damage not chemical) 
●  Principal components à overfitting vs. underfitting 
●  Restrict frequency range à reduce influence of certain peaks 
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Model FSBS Values in 
Calibration Set 

# of Principal 
Components 

Frequency Range 
(cm-1) 

1 All 5 1700-950 
2 All 3 1700-950 
3 All 4 1700-950 
4 FSBS > 60.0 MPa 4 1700-950 
5 FSBS > 60.0 MPa 4 1600-950 

 



Model Analysis 

Model predictions of independent sample set evaluated on three criteria: 
●  Bias:  

●  Root mean square error of prediction: √⁠​​∑𝑖=1↑𝑛▒( ​𝑥↓𝑖↑𝑝𝑟𝑒𝑑 
− ​𝑥↓𝑖↑𝑎𝑐𝑡𝑢𝑎𝑙 )   ↑2 /𝑛   

●  Average Mahalanobis Distance (M-distance): Measure of the spread 
of the data 

Models 4 and 5 show best performance 
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Model FSBS Values in 
Calibration Set 

# of 
Principal 

Components 

Frequency 
Range 
(cm-1) 

1 All 5 1700-950 
2 All 3 1700-950 
3 All 4 1700-950 

4 FSBS- > 60.0 
MPa 4 1700-950 

5 FSBS- > 60.0 
MPa 4 1600-950 

​∑𝑖=1↑𝑛▒( ​𝑥↓𝑖↑𝑝𝑟𝑒𝑑 − ​𝑥↓𝑖↑𝑎𝑐𝑡𝑢𝑎𝑙 )   /𝑛  
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